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Proof assistants are software tools for formal modeling and verification of software, hardware, design, and
mathematical proofs. Due to the growing complexity and scale of formal proofs, compatibility issues frequently
arise when using different versions of proof assistants. These issues result in broken proofs, disrupting the
maintenance of formalized theories and hindering the broader dissemination of results within the community.
Although existing works have proposed techniques to address specific types of compatibility issues, the
overall characteristics of these issues remain largely unexplored. To address this gap, we conduct the first
extensive empirical study to characterize compatibility issues, using Isabelle as a case study. We develop a
regression testing framework to automatically collect compatibility issues from the Archive of Formal Proofs,
the largest repository of formal proofs in Isabelle. By analyzing 12,079 collected issues, we identify their
types and symptoms and further investigate their root causes. We also extract updated proofs that address
these issues to understand the applied resolution strategies. Our study provides an in-depth understanding of
compatibility issues in proof assistants, offering insights that support the development of effective techniques
to mitigate these issues.
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1 Introduction
Interactive theorem provers (ITPs), also known as proof assistants, such as Isabelle [43], Coq [8],
Lean [9], and HOL4 [56], are software tools for developing formal proofs, which are central to
formal verification and high trustworthiness of applications. They have been successfully applied
across various domains, e.g., verified compiler [29, 32] and certified operating system kernel [20, 28].
While proof assistants offer substantial advantages for the verification of trustworthy systems,
developing formal proofs is labor-intensive. In addition, projects based on machine-checked proofs
are approaching a scale comparable to large software engineering projects. For example, verifying
the seL4 microkernel [28] involved about 700,000 lines of proof code and took more than 20 person-
years. The increasing scale of proofs and the inherent complexity of formal reasoning pose notable
challenges in developing, maintaining, sharing, and reusing formal proofs. A particularly critical
challenge is version compatibility, which often leads to broken proofs.
Like any software, a proof assistant user may run a different version than the one used by the

original author, which may lead to compatibility issues, especially when the two versions are far
apart. Worse still, most users are reluctant to fix issues in others’ code, so if the code does not run
out of the box, it significantly hinders the dissemination of results within the community.
The characteristics of proof assistants result in frequent compatibility issues. Proof assistants

are composed of multiple subsystems, including the logic engine, languages, proof automation,
and libraries of formalized theories. Most of these subsystems can be modified by users to meet
formalization needs and enhance automation. For example, the rules for automated reasoning can
be changed, and the syntax and semantics of the proof languages can also be extended. However,
this flexibility introduces the risk of incompatibility, as changes in one subsystem can affect
others. Therefore, proof assistants face a wider range of issues compared to other software systems
where changes are typically confined to software libraries or application code. Additionally, many
theories are mathematically tightly coupled to each other, resulting in complex dependencies.
Any modification to a foundational theory can trigger a cascade of changes in other dependent
theories, causing widespread proof failures. Although such breaking changes should be rare,
they are actually not uncommon due to the demand for better automation. Various automation
techniques [3, 4, 6, 45, 47] are employed in proof assistants to reduce manual efforts. Many of these
automatic reasoners, targeting undecidable problems, rely on heuristics — reasoning strategies that
are effective in common cases but may fail in unforeseen situations or conflict with other heuristics.
Therefore, the demand for automation drives changes in proof libraries, and the complexity of
automated reasoning contributes to incompatibilities.
Compatibility issues in proof assistants are both frequent and challenging to address. First, the

outcome of many proof commands is not easily predictable without execution. This is in stark
contrast to traditional programs, where issues are often identified and resolved through static
analysis. Additionally, when errors occur in proof assistants, especially with automated reasoning
procedures, such as simp in Isabelle and Lean or simpl in Coq, users typically receive very limited
information about why the proof failed. This contrasts with traditional programs, where error
messages and stack traces provide more context for debugging. Moreover, understanding proofs
requires domain knowledge, making it more challenging than understanding usual programs.
Therefore, it is practically valuable to study the unique characteristics of proof assistant com-

patibility issues and develop effective approaches to address them. Broken proofs have received
increasing attention and investigation. For example, [52] automated proof repair for data type
changes in Coq, and [18] focused on maintaining proofs in response to changes in verified code and
its specification. [50] constructed a proof repair dataset for Coq to facilitate machine learning-based
proof repair. However, most existing works focus on specific types of changes, such as data type
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Fig. 1. Overview of the empirical study.

changes or the evolution of verification objects. In practice, upgrading proof assistants and proof
libraries can introduce various changes, which are often entangled with each other. Given the large
number of incompatibilities arising from version differences and their inherent complexity, it is
desirable to automate the repair process. Achieving effective automation requires an in-depth study
of compatibility issues. To the best of our knowledge, there is a lack of a comprehensive analysis of
this problem.
To bridge this gap, we conduct an empirical study of version compatibility issues in Isabelle,

a widely used proof assistant. Following case study research principles [55], we systematically
design our investigation to explore compatibility issues in a real-world setting. The overview
of our study is shown in Figure 1. First, we propose a general regression testing framework to
automatically collect compatibility issues from proof assistants. Using this framework, we test four
versions of Isabelle and more than 21,000 theories from the Archive of Formal Proofs (AFP) [1], a
large repository of formal proofs in Isabelle, finally collecting 12,079 compatibility issues. Next, we
categorize these incompatibilities into seven types based on their characteristics, providing insight
into their distributions. We further employ automated analysis and sampling to investigate their
root causes. Finally, we analyze aligned proofs from AFP that contain fixes for these issues and
summarize the resolution strategies to understand how they can be addressed. Given the depth
and scale of our study, we focus on Isabelle within the scope of this paper, though our general
methodology is applicable to other theorem provers as well. In particular, we focus on the following
research questions:

RQ1 What are the main types of compatibility issues encountered in Isabelle?
RQ2 What are the root causes of compatibility issues during Isabelle upgrades?
RQ3 How are compatibility issues resolved, and what are the best practices?

In summary, our main contributions are as follows:

(1) We develop an automated framework to collect compatibility issues in proof assistants.
(2) We propose a taxonomy of compatibility issues based on their characteristics and develop an

automated root cause analyzer to complement manual analysis.
(3) We analyze the resolutions of compatibility issues to understand how they are addressed in

practice.
(4) We release the dataset of compatibility issues and their resolutions, along with our automated

analysis framework, to facilitate future research on proof engineering.
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2 Background
This section introduces Isabelle and AFP, and then describes their release cycle. Finally, we give a
motivating example.

Isabelle and AFP. A theory file of Isabelle consists of a series of definitions, lemmas, proofs, and
other commands. A lemma is proved by a sequence of proof commands, each operating on the
current proof state and transforming it into a new state. The proof assistant interactively checks the
correctness of each proof command and raises an error if the proof is invalid. Isabelle comes with a
comprehensive library of theories, such as analysis, algebra, and set theory, collectively referred to
as the "Isabelle Library". In addition, the Archive of Formal Proofs (AFP) is an extensive repository
of formal proofs maintained by the Isabelle community, containing more advanced theories and
real-world applications.
Isabelle and AFP follow a unique release cycle. Isabelle typically follows an annual release

schedule. Each release is assigned a version number, such as Isabelle2023 or Isabelle2021-1 when
multiple releases occur in a single year1. AFP entries are actively maintained by both their authors
and the community to ensure compatibility with the development version of Isabelle. With each
new release of Isabelle, a corresponding branch of AFP is created and frozen for the latest release,
named after the Isabelle version number, such as AFP-2023. Therefore, there are multiple branches
of AFP, and each AFP branch is guaranteed to be compatible with the corresponding Isabelle version.
For instance, AFP-2023 must be compatible with Isabelle2023.

Motivating Example. Proofs in AFP or client code may fail after a proof assistant update, even
when the modified lemmas seem unrelated to the client code. For example, in the release of
Isabelle2021-1, several new lemmas regarding the absorption law of the max function were added
to the Isabelle library. These lemmas were designated as simplification rules. A simplification rule
is a theorem that can be automatically applied by some proof commands like simp and auto to
simplify expressions without user intervention. While this is not typically considered as a breaking
change, it caused the proof in Figure 2 to fail. The proof command auto mistakenly applied the
new simplification rules, steering the simplification process in an unintended direction. Since the
simplification process does not backtrack, once the proof follows an incorrect path, the system
cannot reverse the decision. This ultimately leads to a failure. Given the thousands of simplification
rules involved, pinpointing the one responsible for the error can be very challenging, making the
diagnosis of the compatibility issue highly time-consuming.

1 lemma tendsto_at_right_realI_sequentially:
2 ...
3 then obtain X where X:
4 "

∧
n. f (X n) ∉ A m"

5 "
∧
n. X n > c"

6 "
∧
n. X (Suc n) < c + max 0 ((X n - c)/2)"

7 (* Error: failed to finish proof *)
8 by auto

1 --- Isabelle2021/src/HOL/Lattices.thy
2 +++ Isabelle2021-1/src/HOL/Lattices.thy
3 lemma absorb3: "a < b =⇒ a * b = a"
4 by (rule absorb1) (rule strict_implies_order)
5 lemma absorb4: "b < a =⇒ a * b = b"
6 by (rule absorb2) (rule strict_implies_order)
7 declare ... max.absorb1 [simp] max.absorb2 [simp]
8 max.absorb3 [simp] max.absorb4 [simp]

Fig. 2. Modification to simplification rule (right) leads to an unexpected proof failure (left).

3 Data Preparation
An overview of the data preparation process is shown in Figure 3. We begin by collecting compati-
bility issues from AFP through regression testing and then extract aligned proofs that contain fixes
for these compatibility issues.
1Isabelle2021-1 is the second release in 2021, and the first release is Isabelle2021.
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Table 1. Regression testing setup and statistics of AFP.

AFP version Isabelle version(s) Number of theories Lines of code

2021 2021-1, 2022, 2023 6,530 3,222,535
2021-1 2022, 2023 7,172 3,602,415
2022 2023 7,596 3,945,286

3.1 Compatibility Issue Collection
We develop an automated regression testing framework to collect incompatibilities for different
versions of theorem provers and proof libraries. This framework checks proofs from old versions
against new version proof assistants to identify compatibility issues. Although this study focuses
on Isabelle and AFP, our methodology is general and can be adapted to other proof assistants.

Four stable releases of Isabelle (2021, 2021-1, 2022, 2023) and their corresponding AFP branches
are selected for data collection. We use all possible combinations of the newer Isabelle versions to
check the proofs of older version AFP theories to simulate diverse real-world upgrade scenarios.
Table 1 presents the regression testing setup along with statistics on the theories and proofs. In
total, we collected 12,079 compatibility issues from over 21,000 theories and 10 million lines of
proof. Next, we detail the core components of our framework.

3.1.1 Dependency Setup. To check proofs in a project, we need to specify the paths to their
dependencies, which include both the proof assistant’s standard library (e.g., the Isabelle library)
and external proof libraries (e.g., AFP). Since the standard library is bundled with the proof assistant
distribution, only versions of external proof libraries need to be specified. These proof libraries are
similar to third-party libraries in software development, providing reusable theories and proofs.
Therefore, it is common practice to upgrade these proof libraries alongside the proof assistant to
maintain compatibility. In line with this practice, we use proof libraries that correspond to the
version of the proof assistant. This setup also ensures that the compatibility issues collected are
directly related to the theories being checked.

3.1.2 Proof Checking Strategy. Theory file commands are executed sequentially, similar to an
interactive user session. Typically, in regression testing, execution halts when an error is encoun-
tered, leaving remaining code unchecked. This is not ideal for collecting compatibility issues as it
would miss all the issues after the first one. While re-executing the tests after each fix is a potential
solution, it is impractical due to time constraints and the volume of theory files.
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Algorithm 1: The sorry-skipping proof checking strategy for a sequence of commands.
Input: A state 𝑠 , a list of commands to execute {𝑐𝑖 }𝑛𝑖=1

1 𝑠𝑘𝑖𝑝𝑝𝑖𝑛𝑔← 𝑓 𝑎𝑙𝑠𝑒 ;
2 𝑛𝑜_𝑒𝑟𝑟𝑜𝑟 ← 𝑡𝑟𝑢𝑒 ;
3 𝑒𝑟𝑟𝑜𝑟𝑠 ← ∅;
4 for 𝑖 ← 1 to 𝑛 do
5 if (𝑠𝑘𝑖𝑝𝑝𝑖𝑛𝑔 and 𝑛𝑜_𝑒𝑟𝑟𝑜𝑟 ) or proof is finished then
6 𝑠𝑘𝑖𝑝𝑝𝑖𝑛𝑔← 𝑓 𝑎𝑙𝑠𝑒 ;
7 𝑛𝑜_𝑒𝑟𝑟𝑜𝑟 ← 𝑡𝑟𝑢𝑒 ;
8 try
9 𝑠 ← execute 𝑐𝑖 in 𝑠 ;

10 catch exception 𝑒
11 𝑛𝑜_𝑒𝑟𝑟𝑜𝑟 ← 𝑓 𝑎𝑙𝑠𝑒 ;
12 if not 𝑠𝑘𝑖𝑝𝑝𝑖𝑛𝑔 then
13 𝑒𝑟𝑟𝑜𝑟𝑠 ← 𝑒𝑟𝑟𝑜𝑟𝑠 ∪ {𝑒 };
14 𝑠𝑘𝑖𝑝𝑝𝑖𝑛𝑔← 𝑡𝑟𝑢𝑒 ;
15 try
16 𝑠 ← execute sorry in 𝑠 ;
17 catch exception 𝑒′

18 exit to an outer level proof, return 𝑒𝑟𝑟𝑜𝑟𝑠 if failed;
19 return 𝑒𝑟𝑟𝑜𝑟𝑠 ;

To efficiently gather incompatibilities, we use "fake proofs" [61] to bypass erroneous proof
commands and proceed with the remaining code. We call this a sorry-skipping strategy, inspired by
the sorry command in Isabelle, which allows users to fake the proof for the pending goal. Such a
command is also available in other proof assistants, such as the admit command in Coq and the
sorry command in Lean. When a proof command fails, we invoke sorry to skip the current subgoal
and continue with other subgoals, allowing us to uncover more issues. As shown in Algorithm 1, all
commands are executed within a try-catch block (line 10). Upon encountering an error, we switch
to skipping mode (line 14) and skip the current pending goal. In skipping mode, executing the
remaining proof commands would raise errors, which we simply ignore. The trick is that when we
execute some command without errors, we skip the remaining proof steps for the “sorry-skipped”
subgoal, and we can return to normal mode (line 6).
This strategy allows us to check more proofs and collect more incompatibilities. However, this

strategy does not apply to non-proof failures, such as errors in definitions, as there are no subgoals
to prove. In such cases, we terminate the processing of the theory file and report all encountered
compatibility issues.

3.1.3 Execution Time Limit. There are occasionally "never-ending" proof commands in theory
files as discussed in the manuals of proof assistants [8, 42, 43]. These time-consuming commands
may eventually terminate or may never end, but it is impossible to distinguish between the two
within a finite time. Most of these commands involve simplifiers, such as the auto proof method
in Isabelle and Coq. Proof assistants allow users to modify the simplification rule set, which may
make simplification run forever. If a command previously succeeded within a few seconds but
now runs for several minutes, it is highly likely that the simplifier is stuck in an infinite loop due
to changes in the rules. Alternatively, the simplifier may require many more steps than before,
meaning the proof command still works but requires modification to terminate within a reasonable
time. Our statistics of execution time in Figure 4 show that over 99.99% of proof commands in
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Isabelle terminate within one minute2. Thus, we set a ten-minute timeout for each command to
handle these "never-ending" proofs. If the time limit is reached, we abort execution and treat it as a
timeout error.

3.1.4 Data Preprocessing. After collecting the data, we filter out pre-existing errors and eliminate
redundant compatibility issues to ensure the validity of our results.

Pre-existing errors are inherent to the tested theory files and occur regardless of the version of
the proof assistant used. These errors are not raised when the proofs are checked via the proof
assistant’s build system, as the files containing them are not checked in the build process. We
exclude these errors since they do not represent compatibility issues.
Some redundant compatibility issues may persist across multiple upgrades. For instance, an

issue arising from an AFP-2021-1 theory file with Isabelle 2022 may still appear when executed
in Isabelle2023. This indicates that the cause of this issue is not the upgrade from Isabelle2022 to
Isabelle2023, but rather the upgrade from Isabelle2021-1 to Isabelle2022. We retain only the first
occurrence of such issues to streamline our analysis.

3.2 Proof Alignment
To analyze the resolution of compatibility issues, we align the proofs from different versions of
AFP since issues in previous versions are fixed in newer ones. The aligned proofs represent a
mapping from older proofs, which fail in the newer version of Isabelle, to their corresponding
proofs in the new version that resolve these failures. Our proof alignment approach is similar
to the method used by Tom et al. [50]. We begin by computing an optimal matching between
code fragments in two different versions using a similarity metric. Matched fragments with high
similarity are considered aligned, and those with low similarity are considered as added or removed
code. Formally, given two disjoint sets of code fragments 𝑈 and 𝑉 , we solve a linear assignment
problem to find the optimal match𝑚 that minimizes the total distance between matched fragments:
𝑚 = argmin𝑓

∑
𝑢∈𝑈

𝑑𝑖𝑠𝑡 (𝑢, 𝑓 (𝑢)), where 𝑓 is a bijection from 𝑈 to 𝑉 . The distance function we

employ is a weighted sum of lemma name distance and statement code distance:

𝑑𝑖𝑠𝑡 (𝑢, 𝑣) =𝑤𝑛𝑎𝑚𝑒 · 𝑑𝑖𝑠𝑡𝑛𝑎𝑚𝑒 (𝑢, 𝑣) +𝑤𝑐𝑜𝑑𝑒 · 𝑑𝑖𝑠𝑡𝑐𝑜𝑑𝑒 (𝑢, 𝑣),
in which 𝑑𝑖𝑠𝑡𝑛𝑎𝑚𝑒 is the edit distance between lemma names, and 𝑑𝑖𝑠𝑡𝑐𝑜𝑑𝑒 is a token-based edit
distance variant,

𝑇𝐿𝐷 (𝑥,𝑦;ℎ) =



|𝑦 |, if |𝑥 | = 0,
|𝑥 |, if |𝑦 | = 0,
𝑇𝐿𝐷 (𝑡𝑙 (𝑥), 𝑡𝑙 (𝑦);ℎ), if ℎ𝑑 (𝑥) = ℎ𝑑 (𝑦),

𝑚𝑖𝑛


1 +𝑇𝐿𝐷 (𝑡𝑙 (𝑥), 𝑦;ℎ),
1 +𝑇𝐿𝐷 (𝑥, 𝑡𝑙 (𝑦);ℎ), otherwise,
ℎ(ℎ𝑑 (𝑥), ℎ𝑑 (𝑦)) +𝑇𝐿𝐷 (𝑡𝑙 (𝑥), 𝑡𝑙 (𝑦);ℎ)

where ℎ𝑑 and 𝑡𝑙 are the head and tail functions of a list. Intuitively, the token-based edit distance
measures the similarity between two lists of tokens, with an insertion or deletion cost of 1 and an
replacement cost determined by the parameter ℎ. In contrast, the classic edit distance assigns a cost
of 1 to all three operations on characters. For code distance 𝑑𝑖𝑠𝑡𝑐𝑜𝑑𝑒 , we set the argument ℎ to the
normalized edit distance between two tokens. The weights for name and code are set to 0.3 and 0.7
based on preliminary tests on the changelogs of Isabelle, where the algorithm correctly aligned all
2Proofs are checked using an Intel Core i9-13900K processor with 32GB of RAM. AFP maintainers regard one minute to be
a significant execution time for a single proof step.
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modified lemmas mentioned in the changelogs. Our similarity metric design distinguishes our work
from previous approaches: (1) we account for the similarity between lemma names, ensuring that
lemmas with the same name are more likely to be aligned, (2) we use a token-based edit distance
to compare code, which is more robust to syntax changes than character-based edit distance. In
addition, we use this method for automated root cause analysis, which we will present in Section 4.2.

We extracted 6,942 pairs of aligned proofs, with each pair including the following information:
(1) Specifications of the theorems in both versions.
(2) Complete proofs of the theorems in both versions, presented as two lists of proof commands.
(3) A list of compatibility issues encountered when checking the old version proof in the newer

version of Isabelle.
(4) Meta information about the proofs, including the version numbers of Isabelle and AFP, the

paths to the theory files, and the positions of the proofs in the files.

4 Empirical Study
In this section, we classify and analyze the collected incompatibilities and present our findings.

4.1 Compatibility Issue Categorization (RQ1)
We first propose a taxonomy to classify compatibility issues in Isabelle to understand what compat-
ibility issues users may encounter.

4.1.1 Study Methodology. Modern proof assistants share common infrastructure components for
formalization and verification, including submodules for managing theories, handling logic terms,
constructing proofs, and extending the system. For Isabelle, these four components are served by
four different languages: the theory language subject to the outer syntax, the term language subject
to the inner syntax, the proof language, and the Isabelle/ML language.
The theory language acts like a shell where users can use commands to introduce definitions,

lemmas, and many other components for their theories. Within these commands, users typically
provide terms, often enclosed in double quotes. These terms are logical entities within the formalized
theories. After initializing a goal with a command like lemma, the proof language is employed
to prove theorems by applying proof commands, such as apply, by, etc. In general, these three
languages are used in most theory files. The Isabelle/ML language, on the other hand, is more
advanced and less frequently used. As the underlying programming language of Isabelle, Isabelle/ML
can be used to extend its runtime system, such as defining new theory language commands,
introducing new proof methods for the proof language, etc. In addition to the theory language, the
proof language and the Isabelle/ML language may also contain embedded terms governed by the
inner syntax rules.
Based on these four components, we classify compatibility issues into four categories: theory

errors, term errors, proof errors, and Isabelle/ML errors. Among them, proof errors can be further
divided into syntactic proof errors and semantic proof errors. Syntactic proof errors occur during the
parsing stage of proof commands, such as malformed proof commands, referring to undefined facts
or constants, invalid attributes, etc. Semantic proof errors are raisedwhen the given proof commands
are syntactically valid but cannot construct a valid proof for the given target goal, such as failing to
apply a proof method or failing to refine a subgoal, etc. We do not further consider syntactic and
semantic errors in theory language, term language, and Isabelle/ML language because semantic
errors in these languages are often subtle, such as specifying incorrect lemmas to prove, constructing
syntactically valid but undesirable terms, or introducing syntactically correct ML functions with
unexpected behaviors. These errors are hard to collect and identify without understanding of the
intention of the authors, which is beyond the scope of this study.
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Table 2. Distribution of different types of compatibility issues. The first column shows the version of Isabelle
and AFP. #Issues stands for the number of compatibility issues.

Isabelle & AFP #Issues Theory
errors

Term
errors

Syntactic
proof errors

Semantic
proof errors

Isabelle/ML
errors Others

2021-1 / 2021 3,007 148 (4.92%) 141 (4.69%) 1,511 (50.25%) 1,103 (36.68%) 69 (2.29%) 35 (1.16%)
2022 / 2021-1 2,116 32 (1.51%) 129 (6.10%) 1,529 (72.26%) 351 (16.59%) 49 (2.32%) 26 (1.23%)
2023 / 2022 1,886 18 (0.95%) 188 (9.97%) 1,163 (61.66%) 390 (20.68%) 52 (2.76%) 75 (3.98%)
2022 / 2021 2,050 22 (1.07%) 97 (4.73%) 1,388 (67.71%) 473 (23.07%) 46 (2.24%) 24 (1.17%)
2023 / 2021-1 1,667 17 (1.02%) 171 (10.26%) 966 (57.95%) 393 (23.58%) 53 (3.18%) 67 (4.02%)
2023 / 2021 1,353 6 (0.44%) 138 (10.20%) 613 (45.31%) 473 (34.96%) 53 (3.92%) 70 (5.17%)

Total 12,079 243 (2.01%) 864 (7.15%) 7,170 (59.36%) 3,183 (26.35%) 322 (2.67%) 297 (2.46%)

To efficiently classify the collected compatibility issues, we utilize the structured error messages
provided by Isabelle. For each unique error message pattern (e.g., with certain prefix), we manually
trace it back to the corresponding Isabelle/ML source code locations to identify the component in
which the issues occur. This process ensures comprehensive coverage and produced classification
rules, which are then applied to automatically classify the collected compatibility issues. Therefore,
the classification process is automated and efficient, taking no more than 0.1 s in total.

4.1.2 Results. The distribution of these compatibility issues is shown in Table 2. Among them,
syntactic proof errors are the most prevalent, accounting for 59.36% of the total incompatibilities.
Semantic proof errors are the second most common, contributing 26.35% to the total. Combined,
these proof errors account for over 85% of all incompatibilities. Term errors, Isabelle/ML errors,
and theory errors are less common, accounting for 7.15%, 2.67%, and 2.01%, respectively. Lastly,
the remaining 2.46% of the collected compatibility issues are categorized as others. Next, we detail
these types of compatibility issues and provide examples.
Theory Errors. We collected 243 compatibility issues caused by theory errors, representing

2.01% of the total incompatibilities. These issues arise at the outer syntax level, where no terms or
proofs are involved, leading to import failures, missing file errors, duplicate fact declarations, and
malformed outer syntax. For example, Figure 5 illustrates a theory error caused by importing a
malformed theory Bits_Integer, resulting in an import failure. We also found some pre-existing
theory errors in the AFP theories, such as malformed outer syntax. Although they are not caused
by version updates, they can still lead to errors when imported.

1 (* Native_Word/Code_Target_Word_Base.thy in AFP -2021 -1[37], executed in Isabelle2022 *)
2 theory Code_Target_Word_Base imports
3 "HOL -Library.Word"
4 "Word_Lib.Signed_Division_Word"
5 Bits_Integer
6 (* Error: Failed to load theory "Native_Word.Bits_Integer" *)
7 begin

Fig. 5. An example of theory error.

Term Errors. We found 864 term errors, accounting for 7.15% of the total incompatibilities.
The symptoms of term errors are more diverse than theory errors, including type unification
failures, inner syntax errors, inner lexical errors, ambiguous inputs, and extra or missing variables
in expressions. For example, Figure 6 (top) shows an inner syntax error when parsing a statement
in a theory from AFP-2022 using Isabelle2023. The error message is not very informative, but the
position of the error suggests that it is related to the map update operator ↦→. This error arises
because the map update operator is prioritized over function application in Isabelle2023. Another
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example of a term error is shown in Figure 6 (bottom), where the variable r is inferred as an integer
while a natural number is expected. Isabelle attempts to coerce the integer to a natural number, but
no such coercion is available, resulting in a type unification failure.

1 (* Separation_Logic_Imperative_HOL/Examples/Array_Map_Impl.thy in AFP -2022[31], executed in
Isabelle2023 *)

2 lemma iam_update_abs2: "¬ length l ≤ k =⇒
3 iam_of_list (l[k := Some v]) = iam_of_list l(k ↦→ v)"
4 (* Raises an inner syntax error *)
5 unfolding iam_of_list_def[abs_def] by auto

1 (* Design_Theory/Designs_And_Graphs.thy in AFP -2021[11], executed in Isabelle2021 -1 *)
2 sublocale non_empty_regular_graph ⊆ constant_rep_design "verts G" "arcs_blocks" r
3 (* Raise a type unification error because the variable r is inferred as an int while a

nat is expected *)
4 using arcs_blocks_ne arcs_not_empty
5 by (unfold_locales)(simp_all add: point_replication_number_def)

Fig. 6. An inner syntax error example (top) and a type unification error example (bottom).

Syntactic Proof Errors. The most frequent compatibility issues we collected are syntactic
proof errors, representing 59.36% (7,170) of the total incompatibilities. These errors occur when the
syntax of proof commands is incorrect, and they fall into two main subcategories: malformed proof
commands and undefined components. Malformed proof commands result from changes in the
syntax of proof commands, such as the deprecation of certain proof commands or the renaming of
options, as illustrated in Figure 7 (top). Undefined components refer to unavailable facts, constants,
types, locales, and other elements. Figure 7 (bottom) provides an example of an undefined fact
error encountered when executing a proof command in Isabelle2023. The fact fmember_def is
implicitly generated when using the lift_definition command to define fmember, but it becomes
unavailable after the definition is changed to an abbreviation in the newer release. Undefined fact
errors comprise 50.0% of all the collected compatibility issues, making it the most common error
message. We identified at least 37.7% (2,773) syntactic proof errors caused by changes in the Isabelle
library and Isabelle itself, including 1,898 undefined fact errors resulting from the removal of facts
in the Isabelle library and 875 malformed proof command errors due to changes in proof command
syntax.

Semantic Proof Errors. 26.35% (3,183) of the collected compatibility issues are semantic proof
errors. These issues manifest as proof timeouts, refinement failures, and failures to discharge
proof obligations. As described in Section 3.1.3, proof timeouts are raised when the execution of a
proof command exceeds our time limit. Both refinement failures and failures to discharge proof
obligations indicate that the provided proof commands cannot refine the current goal or complete
the proof. The example in Section 2 falls into this category, showing a proof attempt failure due to
a subtle change in the simplification rule set. Two additional examples are presented in Figure 8,
where the proof in the first example fails because the auto method cannot discharge the proof
obligation with the given facts. This failure is due to changes in the formalization of fimage and
fBex in Isabelle2023. The second example demonstrates a refinement failure caused by a change in
the order of arguments to the rule wqo_on_hom. The first assumption of the rule involves a predicate
tranp_on, whose arguments were swapped in Isabelle2023.
Isabelle/ML Errors. We identified 322 Isabelle/ML errors, accounting for 2.67% of the total

incompatibilities. These errors are reported with the prefix "ML error" directly from Isabelle/ML.
Isabelle allows users to write and execute ML code within theory files, and these errors are typically
caused by changes in the ML code, such as renamed ML functions in Isabelle’s source code. For
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1 (* Landau_Symbols/Landau_Real_Products.thy in AFP -2021[10], executed in Isabelle2023 *)
2 lemma bigtheta_mult_eq: "Θ[F](𝜆x. f x * g x) = Θ[F](f) * Θ[F](g)"
3 proof (intro equalityI subsetI)
4 fix h assume "h ∈ Θ[F](f) * Θ[F](g)"
5 thus "h ∈ Θ[F](𝜆x. f x * g x)" by (elim ...)
6 next
7 fix h assume "h ∈ Θ[F](𝜆x. f x * g x)"
8 then guess c1 c2 :: real unfolding bigtheta_def
9 by (elim landau_o.bigE landau_omega.bigE IntE)
10 (* Raise an error: a proof command is expected but got an identifier 'guess ' *)
11
12 (* ZFC_in_HOL/ZFC_in_HOL.thy in AFP -2021[46], executed in Isabelle2022 *)
13 lemma small_image_nat_V [simp]: "small (g ` N)" for g :: "nat ⇒ V"
14 by (metis (mono_tags , hide_lams) down elts_of_set image_iff inf rangeI subsetI)
15 (* Raise an error: the option 'hide_lams ' has been renamed to 'opaque_lifting ' *)

1 (* UTP/toolkit/FSet_Extra.thy in AFP -2022[16], executed in Isabelle2023 *)
2 lemma flist_nth:
3 "i < fcard vs=⇒ flist vs ! i |∈| vs"
4 apply (simp add: fmember_def flist_def fcard_def)
5 (* Raises an undefined fact error. "fmember" is not available in Isabelle2023 *)
6 apply (metis fcard.rep_eq ...)
7 (* "fcard.rep_eq" is also generated by lift_definition *)

Fig. 7. A malformed proof command example (top) and an undefined fact error example (bottom).

1 (* FO_Theory_Rewriting/Primitives/LV_to_GTT.thy in AFP -2021 -1[38], executed in Isabelle2023 *)
2 lemma ta_sig_pattern_automaton [simp]:
3 "ta_sig (pattern_automaton F R) = F |∪| ffunas_terms R"
4 proof -
5 let ?r = "ta_rule_sig"
6 have *:"Bot |∉| (fstates R) - {|Bot|}" by simp
7 have f:
8 "F = ?r |`| ((𝜆 (f, n). TA_rule f (replicate n Bot) Bot) |`| F)"
9 by (auto simp: fimage_iff fBex_def ta_rule_sig_def split!: prod.splits)
10 (* Raise an error indicating the proof attempt failed *)

1 (* Decreasing-Diagrams-II/Decreasing_Diagrams_II.thy in AFP -2022[13], executed in Isabelle2023 *)
2 lemma wqo_letter_less:
3 assumes t: "trans r" and w: "wqo_on (𝜆a b. (a, b) ∈ r=) UNIV"
4 shows "wqo_on (𝜆a b. (a, b) ∈ (letter_less r)=) UNIV"
5 proof (rule wqo_on_hom[of _ id _ "prod_le (=) (𝜆a b. (a, b) ∈ r=)", unfolded image_id

id_apply ])
6 (* Raise an error saying that the refinement failed *)

Fig. 8. Two semantic proof error examples.

example, the code snippet in Figure 9 triggers an ML error indicating a type unification failure
in ML. In Isabelle2023, the signature of the ML function Context.theory_name changed from
theory → string to {long: bool} → theory → string. Additionally, a new function
Context.theory_base_name was introduced to replace the previous functionality. This breaking
change in the underlying Isabelle/ML system is not mentioned in the changelogs, necessitating
manual inspection of the source code for diagnosis.

Others. Some collected compatibility issues are not classified into the categories above because
we cannot determine the stage at which they occur with the insufficient diagnostic information.
For example, error messages such as "Interrupt" or "exception THM raised" can be triggered at any
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1 (* Collections/ICF/tools/ICF_Tools.thy in AFP -2022[30], executed in Isabelle2023 *)
2 fun revert_abbrevs mpat thy = let (* Isabelle/ML code *)
3 val ctxt = Proof_Context.init_global thy;
4 val match_prefix =
5 if Long_Name.is_qualified (Context.theory_name thy) mpat
6 (* Raises ML error: a type error , cannot unify theory to {long: bool} *)
7 then mpat
8 else Long_Name.qualify (Context.theory_name thy) mpat;
9 val {const_space , constants , ...} = ...

Fig. 9. An Isabelle/ML error example.

stage according to our analysis of the source code. As a result, we classify these issues as "others",
which account for 2.46% of the total.

Finding 1: Syntactic proof errors are the most common type of compatibility issues, accounting
for 59.36% of all incompatibilities. Semantic proof errors are the second most common, making
up 26.35%. Term errors, Isabelle/ML errors, and theory errors are less frequent, constituting
7.15%, 2.67%, and 2.01% of the total, respectively. Additionally, at least 37.7% of syntactic proof
errors are caused by changes in the Isabelle library and Isabelle itself.

4.2 Incompatibility Root Cause Analysis (RQ2)
To better understand how compatibility issues are introduced, we conduct root cause analysis to
identify the changes that lead to incompatibilities.

4.2.1 Study Methodology. We perform a semi-automated analysis to identify the root causes of
incompatibilities. As syntactic proof errors are the most common type, constituting nearly 60%, we
first develop an automated method to identify root causes of these issues. Rather than tracing the
errors back to the changes that introduced them, we begin by detecting the breaking changes in
the Isabelle library and AFP theories during upgrades. By "breaking changes", we refer to renamed,
moved, or deleted theories, lemmas, definitions, and functions. We then match the detected breaking
changes with the error messages and proofs to automatically identify the root causes of some
compatibility issues. To identify breaking changes in different versions, we use a similar approach
to proof alignment, as described in Section 3. The key differences are that (1) we align lemmas,
definitions, and functions across all theories, instead of only erroneous proofs, (2) we also align
theory files to identify renamed and moved theories (using the Jaccard distance of lemma and
definition names in files), and (3) we only retain alignment results where names or locations have
changed.
For the remaining compatibility issues, we conduct a stratified sampling to manually analyze

their root causes, given their varied characteristics. We initially set the sampling ratio to 5% and
ensure that each error message type includes at least one sample by rounding up the number of
samples. This adjustment results in a total of 418 samples, accounting for approximately 7% of the
remaining compatibility issues. The samples are randomly selected across different error message
types and version configurations to ensure representativeness. To ensure the quality of the manual
analysis, we (1) follow the changelogs of Isabelle and AFP to examine for documented breaking
changes, (2) reproduce the issue and check for the unexpected proof states during the upgrade, (3)
inspect related components based on the error messages and review the simplification trace, (4)
compare the dependency graphs of theories and modules across different versions, and (5) test fixes
to confirm the root causes. In cases where we cannot determine the root causes, we label them as
unknown but still include them in the final results.
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Table 3. Automated analysis results of root causes for different types of compatibility issues.

Root causes Syntactic proof error Theory error Semantic proof error

Rename and move 3,483 112 1
Re-formalization 1,955 0 0

Isabelle/ML code change 925 0 0
Missing dependency 86 0 0

Theory error

Term error

Syntactic proof error

Semantic proof error

Isabelle/ML error
Others

Rename and move

Re-formalization

ML API change

Automatic reasoner change

Dependency issue

Module hierarchy change

Semantic change

Unknown

5 16 248 59 0 6

5 42 167 55 0 13

4 0 76 0 18 1

0 0 4 54 0 4

8 17 15 7 0 9

0 4 9 8 0 2

0 15 2 2 1 3

0 2 3 2 1 3
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Fig. 10. Distribution of root causes for different types of compatibility issues.

Given the significant differences in both the number and distribution of automatically and
manually analyzed issues, we estimate the joint distribution by sampling from the automated
analysis results (also 7%, 472 issues) and combining them with the manual analysis results.

4.2.2 Results. We identified seven root causes, which are detailed in the following paragraphs. Our
automated analysis identified root causes for 6,562 compatibility issues, including 6,449 syntactic
proof errors, 112 theory errors, and 1 semantic proof error, as shown in Table 3. All identified theory
and semantic proof errors are caused by importing renamed or moved theories, due to our file
alignment method. Figure 10 shows the estimated joint distribution of root causes for all sampled
issues.
Root Cause 1: Rename and Move. Renamed and moved components are the most common

root causes of the sampled compatibility issues. They result in changes to the component’s name,
which can cause syntactic proof errors, such as undefined facts. These changes are typically made
to correct inappropriate naming or to better organize the theories. For example, the standard
library theory HOL.Euclidean_Division was renamed to HOL.Euclidean_Rings in Isabelle2023
because "Euclidean division" typically denotes a specific division on integers, while this standard
library theory is more general. Renaming can also lead to term errors and semantic proof errors,
particularly when the previous name refers to other defined components after the update.

In addition to theories, renaming and moving can also happen to lemmas, definitions, functions,
datatypes, locales, and other components. In these cases, renaming assumptions or conclusions in
locales can be particularly challenging to track due to their dynamic hierarchy. In Isabelle, locales
serve as the module system to organize parametric theories. Similar mechanisms are also used in
other proof assistants, such as the Module system in Coq. Users can develop their theories based
on existing background theories by importing the corresponding locales. To show the complication

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE068. Publication date: July 2025.



FSE068:14 Xiaokun Luan, David Sanan, Zhe Hou, Qiyuan Xu, Chengwei Liu, Yufan Cai, Yang Liu, and Meng Sun

Sublocale
Tree

Assumptions: Conclusions:

Forest

Assumptions: Conclusions:

ConnectedGraph

Assumptions: Conclusions:

Fig. 11. An example of sublocale that makes tracing changes in Isabelle difficult.

of locales, consider the hierarchy example in Figure 11, where the locale Tree extends Forest
by adding an extra assumption 𝑧 and proving new conclusions. Logically, trees also possess the
properties of connected graphs. By proving that Tree is a sublocale of ConnectedGraph (i.e., a tree
is a connected graph), we can reuse the conclusions of ConnectedGraph in Tree without re-proving
them. To reference a conclusion from ConnectedGraph in Tree, users must provide a prefix "𝑃 ." to
the referenced name, where 𝑃 is the name of the sublocale proof. However, if the conclusions in
ConnectedGraph are modified and users want to view the changes by ctrl-clicking the name "𝑃 .𝑞"
in Tree, the IDE will navigate to the position of the sublocale command and its proof instead of the
location of 𝑞 in ConnectedGraph. Note that the sublocale proof 𝑃 can be placed anywhere, making
it hard for users to locate the actual changes. Additionally, ConnectedGraph may be a sublocale of
another locale (e.g., Graph), allowing its conclusions to be used in Tree with the addition of more
prefixes. This example is a simplified illustration of an actual compatibility issue we collected 3.

Root Cause 2: Re-formalization. There are 277 compatibility issues caused by re-formalization.
Re-formalization refers to changing the syntactic representation of mathematical concepts in
proof assistants while keeping the semantics the same. Examples include swapping the order of
arguments in a function, changing a formula into an equivalent form, replacing a definition with
an abbreviation, etc. In fact, renaming and moving can also be considered as a common form of
re-formalization, which is why they lead to similar compatibility issues. After re-formalization,
proofs relying on the previous syntax may no longer work. For example, the standard library
function indicator started using the of_bool function instead of an if-then-else expression in
Isabelle2021-1. Despite maintaining the same semantics, users now need to explicitly expand the
definition of of_bool to prove goals involving the indicator function. The issue in Figure 7 is also
caused by re-formalization, where the fact fmember_def became unavailable after the definition of
fmember was changed to an abbreviation. Although less common, deletions occur when certain
components are deemed redundant or unnecessary, so we also classify deletions as a form of re-
formalization. We separate renaming and moving from re-formalization as they are more common
and less impactful compared to other forms of re-formalization.
Root Cause 3: Isabelle/ML Code Changes.We identified 103 compatibility issues caused by

Isabelle/ML code changes, encompassing nearly all Isabelle/ML errors and some syntactic proof
errors. Although users who write ML code in their theories are typically advanced and familiar
with the Isabelle/ML system, the lack of documentation for the source code and changes in the
Isabelle/ML system can still make it challenging to identify the root causes. Syntactic proof errors
resulting from Isabelle/ML API changes are mainly due to modifications in the ML implementation
of proof methods.
Root Cause 4: Changes of Automated Reasoners. 62 compatibility issues are caused by

changes in automated reasoners. Most automatic proof commands function as black-boxes to

3A lemma named arr_char in the Category3 AFP entry was renamed in AFP-2021-1, causing many undefined fact errors in
other theories that depend on Category3.
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users, and changes in the underlying reasoning procedures can lead to unexpected failures. While
changes to proof methods themselves are rare, they can still cause compatibility issues (e.g., the
deprecation of the guess command shown in Figure 7). On the other hand, automatic proof
commands such as auto and force rely heavily on a set of rules for simplification and reasoning.
These rules guide the simplifier and classical reasoner in simplifying expressions and discharging
proof obligations4. Adding new rules or removing existing ones can unexpectedly affect their
behaviors, as we presented in Section 2. Such subtle changes mainly lead to semantic proof errors.
They are challenging to diagnose because manually analyzing the logs of automated reasoners is
cumbersome and time-consuming, as the logs are typically very verbose.
Root Cause 5: Dependency Conflicts & Missing Dependencies. 35 compatibility issues

are caused by dependency conflicts, and 15 are caused by missing dependencies. Both types of
issues stem from modifications to the imports, such as adding, removing, or replacing dependencies.
These changes can lead to duplicate definitions, unavailable facts, or shadowing of related com-
ponents. For example, the theory HOL-Library.Equipollence was added as a new dependency
to HOL-Analysis.Abstract_Topology_2 in the standard library of Isabelle2023, thus propagat-
ing the infix notation "≈" to the latter theory, which is a dependency of any theory based on
HOL-Probability. As a result, the AFP theory in Figure 12 raises an ambiguous input error when
executed in Isabelle2023, because two notations use the same operator "≈", leading to two valid
parse trees.

1 (* Probabilistic_Noninterference/Resumption_Based.thy in AFP -2021 -1[49], executed in Isabelle2023
*)

2 abbreviation indisAbbrev (infix "≈" 50)
3 where "s1 ≈ s2 ≡ (s1, s2) ∈ indis"
4 lemma indis_refl[intro]: "s ≈ s" (* An ambiguous input error *)
5 using refl_indis unfolding refl_on_def by simp

Fig. 12. Ambiguous inputs caused by dependency conflict.

Root Cause 6: Module Hierarchy Changes. We identified 23 compatibility issues caused
by changes in the module hierarchy. In addition to locales, classes are also part of the module
hierarchy; they are special locales with exactly one type variable. Modifications to the module
hierarchy are sometimes made to better organize theories or enhance automation. For instance, the
class semiring_bit_shifts in the standard library was removed in Isabelle2021-1 to simplify the
hierarchy of bit operations. Module hierarchy changes can make certain assumptions or conclusions
become unavailable or create additional proof obligations that the existing proofs cannot discharge,
leading to proof errors.
Root Cause 7: Semantic Changes in Formalization.We identified 23 compatibility issues

caused by semantic changes. Semantic changes are substantial modifications that typically require
re-formalization and re-proof of the related concepts and theorems. The example in Figure 6 is due
to a semantic change in the specification of regular graphs, where the node degree was changed
from an integer to a natural number. Such semantic changes mostly cause term errors as they lead
to inner syntax changes.

Finding 2: Root causes of incompatibilities in Isabelle include renaming and moving, re-
formalization, Isabelle/ML code changes, changes of automated reasoners, dependency conflicts
and missing dependencies, module hierarchy changes, and semantic changes in formalization.

4These rules are distinct from the facts passed as arguments to the automated reasoners.
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4.3 Common Resolutions in Practice (RQ3)
We further analyze the resolutions of compatibility issues to enable a better understanding of how
to fix them in practice.

4.3.1 Study Methodology. We summarize the resolution strategies for compatibility issues from
three sources: the official changelogs of Isabelle, the extracted aligned proofs from AFP, and the
sampled compatibility issues used for root cause analysis. We aim to identify the most common
strategies for fixing incompatibilities instead of providing an exhaustive list of solutions.
The changelogs of Isabelle contain detailed descriptions of breaking changes in each release,

sometimes accompanied by suggestions for fixing incompatibilities caused by these changes. This
information is mostly helpful for resolving compatibility issues introduced by changes in the
Isabelle library. The aligned AFP proofs contain resolutions provided by the AFP maintainers for
proof failures. Considering the volume of the aligned proofs, we randomly sampled 5% for manual
analysis. As the aligned proofs only contain proof failures, we also inspect the resolutions to those
non-proof errors in our sampled compatibility issues to ensure we cover all types of issues.

4.3.2 Results. We identified five common resolution patterns.
Resolution 1: Refactoring. For syntactical changes, refactoring is the most common and

effective solution, accounting for 36.4% (451) of the analyzed resolutions. This strategy addresses
many changes that do not affect the semantics of the formalization or proofs, such as renamed and
relocated items causing undefined facts or constants, changes in the order of function arguments
that result in type errors, incorrect instantiation of rules due to changes in the order of assumptions,
evolved Isabelle/ML APIs, etc. Among the 50 documented fixes to breaking changes in the Isabelle
library changelogs (from 2021-1 to 2023), 39 involve refactoring, such as renaming theorems and
theories, changing the order of arguments, and updating operator notations. Refactoring proofs
and terms is analogous to refactoring code to adapt to changes in APIs in software development.
The difference is that refactoring in Isabelle can happen at the level of terms, proofs, and ML code,
and refactoring at different levels may affect each other.

Resolution 2: Adjusting Terminal Proofs.Many proof failures only require local adjustments
to terminal proofs. 21.8% (270) of the compatibility issues analyzed are fixed by adjusting terminal
proofs. Terminal proofs in Isabelle are the proofs using the by command, which are supposed
to discharge the current goal without affecting other subgoals. If the proof fails only because of
a terminal proof failure, it can be typically resolved by replacing the failing proof method with
another one, or by modifying the facts passed to the automated reasoners. For instance, the broken
proof in the motivating example in Section 2 can be fixed by replacing auto with blast. This
differs from refactoring in that refactoring does not change the semantics of the formalization or
the proofs while adjusting terminal proofs leads to substantial changes in proof commands. We
notice that many fixes for terminal proofs used the metis, meson, and smt methods, which are
usually generated by Sledgehammer [6], a built-in tool in Isabelle that applies automated theorem
provers (ATPs) and satisfiability modulo theories (SMT) solvers to find proofs. This indicates that
using Sledgehammer is an effective way to resolve terminal proof failures. To validate this, we
apply Sledgehammer on a subset of the collected proof errors, and the results are shown in Table 4.
Sledgehammer can fix a large portion of proof errors, especially in newer versions of Isabelle. This
discrepancy may be due to improvements in Sledgehammer’s performance and differences between
compatibility issues.
Resolution 3: Re-define and Re-prove. If the changes are substantial, related concepts and

lemmas must be re-defined and re-proved, akin to re-implementation when adapting to new
requirements. 21.4% (265) of the sampled issues require re-defining and re-proving. Common cases
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Table 4. Number of proof errors fixed by Sledgehammer.

Isabelle version AFP version #Proof errors #Fixed by Sledgehammer

2021-1 2021 2,614 132 (5.05%)
2022 2021-1 1,880 373 (19.83%)
2023 2022 1,553 836 (53.83%)

include semantic changes of definitions and re-formalization of induction rules. This strategy is the
most complex, as it not only requires understanding the formalized theories but also results in a
wide range of modifications to existing formalization and proofs. Semantic changes can sometimes
simplify the re-proving process, e.g., by leveraging the strengthened assumptions. However, the
re-proving process may also become more challenging, such as when the datatype is extended with
new constructors and more proof obligations are introduced.
Resolution 4: Fix Broken Dependencies. For issues caused by dependency issues, the most

common resolutions include importing the missing theories or removing conflicting imports
(6.0%, 74), and temporarily shadowing the conflicting components (3.6%, 44). Changing imports
is effective in cases where some items are moved from one direct dependency to another. On
the other hand, hiding items is primarily used to resolve conflicting components introduced by
some deep dependencies. For instance, the issue presented in Figure 12 was fixed by locally hiding
the conflicting notation from the deep dependency HOL-Library.Equipollence. Compared to
previous strategies, fixes for dependency issues are less localized and may introduce new issues in
future updates.
Resolution 5: Change to Structured Proofs.We found that fixes to broken plain backward

reasoning proofs are typically written in a structured style. Plain backward reasoning proofs consist
of a series of apply commands, usually referred to as "apply-scripts". They are more likely to fail
after changes because they often modify all subgoals at once, making the outcome less predictable.
For example, 93 out of 99 "No subgoals" errors occur with apply-scripts. Such errors indicate that
all subgoals have been discharged but some remaining proof commands still remain. In contrast,
structured proofs explicitly specify the subgoals, allowing users to anticipate the proof’s progression
without executing the proof, and they address one subgoal at a time. This makes the proofs more
readable and maintainable, helping prevent some compatibility issues in future updates.

Finding 3: Five common resolution strategies for fixing incompatibilities in Isabelle are identified:
refactoring, adjusting terminal proofs, re-defining and re-proving, fixing broken dependencies,
and using structured proofs. Sledgehammer is an effective tool for fixing broken terminal proofs.

5 Discussion
Differences Between Other Software Systems. The compatibility issues in Isabelle demonstrate

distinct characteristics compared to traditional software systems. First, over 37.7% of syntactic
proof errors stem from changes in Isabelle and its standard library instead of third-party libraries,
indicating the rapid evolution of Isabelle’s core. This highlights the challenges of maintaining
backward compatibility in proof assistants. Second, frequent breaking changes in Isabelle and its
standard libraries have a greater impact on client code. For example, modifications to the definition
of partial order affected almost all theories that involve proofs about ordering. In contrast, studies
on the Java ecosystem show that only 2.5% to 8% [44, 63] of client code is affected by breaking
changes. Third, the tight coupling between automated reasoners and numerous theories means
that even minor changes to simplification rules can lead to compatibility issues that are hard to
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diagnose. The flexibility of Isabelle’s locale module mechanism also complicates the localization and
resolution of syntactic proof errors. Lastly, some errors in Isabelle share similarities with traditional
parser or type-related errors, but many are unique to interactive theorem proving systems, such as
errors related to proof automation.

Generalizability to Other Proof Assistants. The data collection procedure and classification criteria
are adaptable to other proof assistants. However, the management of proof libraries varies signifi-
cantly across different proof assistants. For example, Coq libraries are more decentralized, which
may result in users facing more compatibility issues when upgrading Coq [50]. Such differences
may lead to different distributions of compatibility issues and require different mitigation strategies.

Challenges in Automated Proof Adaption. Automatically fixing proof errors to adapt existing
proofs to new versions of proof assistants is highly desirable. However, as shown in our root cause
analysis results, the causes of proof errors vary, requiring automated adaptation methods tailored
to different types of changes. Although existing works focus on different types of changes [18, 53],
most of them are developed for Coq and may not apply to other proof assistants. Leveraging
powerful automation tools such as Sledgehammer and guiding the search process with existing
proofs is a promising direction.

Impacts on AI-based Theorem Proving. Version compatibility issues of proof assistants also pose
challenges to the development of AI-based theorem proving systems [14, 26, 27, 48, 59]. Due to
the rapid evolution of proof assistants and frequent breaking changes, the training data for AI
models may become outdated, causing a distribution shift between the training data and the
application environment. Given the significantly smaller corpus of formal proofs compared to
other programming languages, the distribution shift can have a greater impact on the performance
of machine learning methods. Developing automated proof repair methods to adapt the training
data to new environments is a promising direction to address this challenge. Moreover, we believe
that the collected compatibility issues and the aligned proofs offer valuable resources for AI-based
theorem proving.

Takeaways for Isabelle Users and Developers. This study offers practical takeaways for Isabelle
users and developers to mitigate compatibility issues. For users, (1) adopting structured proof
styles can improve maintainability of proofs, and (2) leveraging Sledgehammer can effectively
resolve many terminal proof errors and improve proof repair efficiency. For developers, (1) declaring
theorems as simplification rules should be done with caution, as it may lead to unexpected proof
failures that are hard to diagnose and fix, and (2) the prevalence of proof errors highlights the need
for better compatibility and automated proof repair tools.

6 Threats to Validity
Internal Threat. The main internal threat comes from biases and errors in the manual analysis of

compatibility issues. To mitigate this, we employed the open coding method [15], systematically
analyzing and labeling qualitative data to identify patterns and categorize compatibility issues.
By grounding the analysis in the data, this method helps reduce subjectivity and enhance the
reliability of the results. For challenging cases, at least two authors independently analyzed the data
and reached a consensus to ensure result accuracy. Another threat comes from sampling bias. As
mitigation, we performed stratified sampling to select a representative subset of compatibility issues
for manual analysis. The Jensen-Shannon divergence between the selected and collected issues
is less than 0.005, indicating that the selected issues are representative of the collected issues. In
addition, the deduplication process may introduce bias. We consider issues as duplicates only when
they occur at the same location with identical error messages and retain only the first occurrence.
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Theoretically, duplicate issues could stem from different root causes across versions, and if removed
during deduplication, these cases could introduce minor bias in cause distribution. However, the
impact should be negligible given their low likelihood, as we found no such instances in our dataset.

External Threat. This study focused on Isabelle, which presents an external threat to the generality
of our findings due to differences in design and ecosystem compared to other proof assistants. To
address this, we developed a general incompatibility collection framework that can be adapted
to other proof assistants for future research on compatibility issues. We also highlighted features
specific to Isabelle in our methodology description, including the release cycle, theory commands,
and proof language. However, changes in the Isabelle ecosystem over time may introduce new types
of compatibility issues not covered in our study. To mitigate this threat, we have open released
the data collection framework to support the collection and analysis of incompatibilities in future
releases.

7 Related Work
Analysis of Formal Proofs. We collect compatibility issues fromAFP, [5] also mined AFP to analyze

its code growth and contribution patterns, dependency structure, complexity of supporting lemmas,
and the usage of Sledgehammer. Software metrics that provide insights on code organization and
development have been migrated in the context of formal proofs [2]. Moreover, proof similarity
has been studied to align concepts across different proof assistants [17]. Our study differs from
these works in focusing on compatibility issues and proof alignment in the same proof assistant
across different releases.

Proof Engineering. Compatibility issues in proof assistants are a key aspect of proof engineer-
ing [51], a research area focused on best practices and developing tools for building large systems
in proof assistants. Challenges in proof engineering are receiving increasing attention in the formal
verification community. For example, [62] described proof maintenance challenges in the formal
verification of the Raft consensus protocol and proposed a methodology of planning to reduce
rework in response to changes during the iterative system verification process. [53] developed a
proof adaption method that searches change history to find patches applicable to similar proofs.
[52] used proof term transformation technique and a decompiler from proof terms to proof scripts
to repair proofs broken by type changes. [18] presented a proof repair approach for higher-order
imperative functions, producing proofs for previously verified but now changed OCaml functions.
Additionally, there are works on proof reuse [54] and proof failure reproduction [19]. Our work
complements these studies by offering a holistic view of compatibility issues in Isabelle.

Compatibility Issues in Other Software Systems. Compatibility issues have been well studied in
the context of Android apps [24, 25, 35, 36, 40, 41, 66] and Java ecosystem [44, 63, 67]. In addition,
compatibility issues have also been explored in other domains, such as deep learning systems [21, 60],
software licenses [64, 65], Python [58, 68], and JSON schemas [22], etc. Many of these works
focus on detecting deprecated APIs [7, 34, 57] that may cause incompatibilities and developing
methods to resolve compatibility issues [12, 23, 33]. Our study is the first comprehensive analysis
of compatibility issues in proof assistants, distinguishing it from previous work on traditional
software compatibility.

8 Conclusion
In this paper, we conducted the first large-scale comprehensive empirical study on compatibility
issues in proof assistants. We collected 12,079 compatibility issues from four major Isabelle releases
by regression testing more than 21,000 theories. By analyzing these issues, we proposed a taxonomy

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE068. Publication date: July 2025.



FSE068:20 Xiaokun Luan, David Sanan, Zhe Hou, Qiyuan Xu, Chengwei Liu, Yufan Cai, Yang Liu, and Meng Sun

of compatibility issues in proof assistants and identified their root causes. Additionally, we collected
and investigated the actual fixes for these issues to gain insights into the resolution strategies.
The regressing testing framework, the automated analysis tools, the datasets, and the analysis
results have been made publicly available for future research. We believe this study can provide
researchers and proof engineers a better understanding of compatibility issues in proof assistants
and facilitate the development of more robust proof engineering practices.

Data Availability
The artifacts of this study can be accessed at https://doi.org/10.6084/m9.figshare.25912954.v1 [39].
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