
A Minimal Proof Language for Neural Theorem
Proving over Isabelle/HOL

Abstract—Neural Theorem Proving (NTP) employs deep
learning methods, particularly Large Language Models
(LLMs), to automate formal proofs in proof assistants. This
approach holds promise for reducing the dramatic labor costs
or computation costs required in proof engineering, which
is fundamental to formal verification and other software
engineering methods. The paper explores the potential of
improving NTP by redesigning the proof language, given
that LLMs’ capabilities depend highly on representations.
We introduce MiniLang, a redesigned proof language
for Isabelle/HOL incorporating an improved version of
Sledgehammer. Experiments show MiniLang benefits two
fine-tuned LLMs by improving the success rate on the PISA
benchmark by up to 29% in comparison to generation of Isar
proof script. The success rate under one attempt (so-called
pass@1) reaches 69.1%, exceeding the previous Baldur’s
pass@64 (65.7%); The pass@8 reaches 79.2%, exceeding the
state-of-the-art on PISA (71.0%) achieved by Magnushammer.

I. INTRODUCTION

Formal verification exhaustively examines software
systems for specific vulnerabilities and certifies crucial
safety and correctness properties. This process serves as an
essential mechanism for ensuring program safety in safety-
critical scenarios. Theorem proving—whether interactive or
automated—represents a key component of formal verification
and often becomes the primary bottleneck in the process.

Interactive theorem proving (ITP) relies on proof assistants,
specialized software that enables users to construct certified
proofs. Automated theorem proving (ATP) proves goals au-
tomatically at the cost of expressiveness. Both of them face
challenges in formal verification: ITP requires substantial man-
ual effort when verifying large systems; ATP may fail if the
automation is not powerful enough.

The rise of LLMs has the potential to change this status
quo. So-called Neural Theorem Proving (NTP) uses LLMs
to interface with interactive proof assistants, enabling auto-
mated proof construction for complex properties without sac-
rificing expressiveness [1]–[4]. Promisingly, recent NTP can
prove a substantial number of math competition problems,
including those at the International Mathematical Olympiad
level, achieving near 90% success on miniF2F [3].

Unfortunately, recent NTP works seem to focus primarily
on LLMs’ mathematical reasoning capabilities, with extensive
attention given to math competitions (miniF2F [5], Putnam-
Bench [6], and [7]–[10]), while benchmarks (PISA [11], Co-
qGym [12], and [13]–[20]) derived from the wider body of
real-world proof engineering appear to have been less prior-
itized. Based on our brief survey [21] of 46 arXiv articles
on NTP uploaded since 2024, 30 works focus exclusively on

math competitions, only 7 consider general mathemantical for-
malisations, and 9 consider broader applications of theorem
proving common to computer science such as system security,
program verification, or computation theory.

Among existing NTP works, approaches fall into two sorts
— search-based approach and declarative approach — accord-
ing to the role of the theorem prover’s tactic language in the
approaches.

A tactic is a subroutine that either solves proof goals directly
or transforms them into a simpler form. In tactic-based proofs,
a proof is constructed through the composition of tactics, rep-
resented as a sequence of tactics, e.g., fig. 1a. Tactics are
direct computational transformations of the proof state that
are generally difficult to understand intuitively. Consequently,
tactic-based proofs make explicit the computational process of
soundly transforming a proof’s premises into its goals, rather
than conveying the intuitive ideas of the proof as typically
presented in textbooks.

In the field of NTP, the search-based approach essentially
uses LLMs to provide heuristics that guide the search for
a sequence of tactics that proves the goal. The declarative
approach, by contrast, trains LLMs to generate proof outlines
(e.g., fig. 1c) that decompose large proof goals into smaller
subgoals. The ability to express declarative proofs is heavily
dependent on the capabilities of the chosen underlying theo-
rem prover. Isabelle [22] is a theorem prover which supports
particularly expressive declarative proofs where users write
structural proof outlines, and can delegate the discharge of
subgoals to ATPs such as Sledgehammer [23] and SMT solvers
(fig. 1c). Manual tactics are employed only when ATPs fail.
Consequently, the role of tactics is minimized, leaving clean
proof outlines that express the proof idea. Lean, a theorem
prover which has seen particular popularity in NTP, finds itself
in an intermediate position between these two styles (fig. 1b).
While it provides syntax for writing in a declarative style,
tactics still play a key role in Lean because generic automa-
tion tools [24], [25] like hammers [26] are not yet ready or
stable. Coq is a popular theorem prover with the lowest level
of automation among those discussed here — its proofs are
almost exclusively tactic-based.

Prior work suggests that a maximally declarative approach
offers the most promising path to NTP. LLMs excel at propos-
ing high-level intuitions and proof outlines [3], [31], but strug-
gle with detailed stepwise logical inference [32]–[34] creating
challenges in producing high-quality tactic sequences without
extensive search and attempts. Allowing the LLM to focus on
high-level proof structure is complementary to the strengths

Theorem sqrt2_not_rational :
∀ p q : nat, q <> 0 → p * p = 2 * (q * q) → ⊥.

intros p q; generalize p; clear p;
elim q using (well_founded_ind lt_wf).
clear q; intros q Hrec p Hneq;
pose proof Hneq as Hlt_O_q;
apply Nat.neq_0_lt_0 in Hlt_O_q;
intros Heq.
apply (Hrec (3 * q - 2 * p)

(comparison4 _ _ Hlt_O_q Heq)
(3 * p - 4 * q)).

apply sym_not_equal; apply lt_neq;
apply Nat.add_lt_mono_l with (2 * p);
rewrite ← plus_n_O; rewrite Nat.add_comm;
rewrite Nat.sub_add; auto with *.
apply new_equality; auto.
Qed.

(a) A tactic-based proof (Coq, from [27]). Tactics are highlighted.

theorem sqrt_two_irrational
{a b : N} (co : gcd a b = 1) : a^2 ̸= 2 * b^2 :=

by rintro h : a^2 = 2 * b^2
have : 2 | a^2 := by simp [h]
have : 2 | a := dvd_of_dvd_pow prime_two this
apply Exists.elim this rintro c aeq
have : 2 * (2 * c^2) = 2 * b^2 := by
simp [Eq.symm h, aeq]
simp [pow_succ’ _, mul_comm, . . .]

have : 2 * c^2 = b^2 := by
apply mul_left_cancel0 _ this decide

have : 2 | b^2 := by simp [Eq.symm this]
have : 2 | b := by
exact dvd_of_dvd_pow prime_two this

have : 2 | gcd a b := by
apply dvd_gcd . assumption . assumption

have _ : 2 | (1 : N) := by simp [co] at *
contradiction

(b) A mixture of tactics and declarations, (Lean, from [28]).

theorem sqrt2_not_rational: "sqrt 2 /∈ Q"
proof
let ?x = "sqrt 2"
assume "?x ∈ Q"
then obtain m n :: nat where
"|?x| = m / n" and "coprime m n" by ATP

hence "m^2 = ?x^2 * n^2" by ATP
hence eq: "m^2 = 2 * n^2"

using of_nat_eq_iff power2_eq_square by ATP
hence "2 dvd m^2" by ATP
hence "2 dvd m" by ATP
have "2 dvd n" proof -
from "2 dvd m" obtain k where "m = 2 * k" by ATP
with eq have "2 * n^2 = 2^2 * k^2" by ATP
hence "2 dvd n^2" by ATP
thus "2 dvd n" by ATP

qed
with "2 dvd m" have "2 dvd gcd m n" by ATP
with lowest_terms have "2 dvd 1" by ATP
thus False using odd_one by ATP

qed

(c) A declarative proof (Isar in Thor [29] style, modified from [30])

1 theorem sqrt2_not_rational: "sqrt 2 /∈ Q"
2 RULE
3 INTRO
4 LET ?x = "sqrt 2"
5 CONSIDER m n :: nat where
6 A1: "|?x| = m / n" and A2: "coprime m n" END
7 HAVE B: "m^2 = ?x^2 * n^2" END WITH A1 A2
8 HAVE eq: "m^2 = 2 * n^2"
9 END WITH B of_nat_eq_iff power2_eq_square

10 HAVE C: "2 dvd m^2" END WITH eq
11 HAVE D: "2 dvd m" END WITH C
12 HAVE E: "2 dvd n"
13 CONSIDER k where F: "m = 2 * k" END WITH D
14 HAVE G: "2 * n^2 = 2^2 * k^2" END WITH F eq
15 HAVE H: "2 dvd n^2" END WITH G
16 END WITH H
17 HAVE I: "2 dvd gcd m n" END WITH E
18 HAVE J: "2 dvd 1" END WITH I lowest_terms
19 END WITH odd_one J

(d) MiniLang translation of the Isar proof

Fig. 1: Several proof languages. (a | b) and (a dvd b) denote integer division of a by b.

of ATPs, which can then work to discharge local subgoals.
Moreover in a setting such as Lean where declarative and
tactics-based proofs are commonly mixed, the LLM must learn
both styles of proof in more detail, increasing the complexity
of the learning problem.

The declarative approach, however, depends on three criti-
cal supports from the underlying proof assistant: a declarative
proof language, powerful proof automation that minimizes re-
liance on tactics, and a large training corpus written in the
declarative style.

Isabelle best fulfills these requirements in real-world proof
engineering. Beyond its declarative language and powerful
automation, a key differentiator lies in the training corpus.
(1) Scale: Isabelle’s standard library [35] and Archive of
Formal Proofs (AFP) [36] provide ∼5.4M lines of code and
∼356K proofs. By contrast, Lean’s corpus stems mainly
from mathlib [37], containing ∼1.2M lines; the latest Coq
corpus from CoqStop [38] collects ∼197K proofs. (2) Style:
Isabelle’s corpus focuses on declarative proofs, while Coq’s

relies on tactic-based proofs unsuitable for declarative NTP
training. (3) Scope: Isabelle’s corpus spans diverse areas
across program verification, computer security, computation
theory, and math. By contrast, Lean’s corpus focuses almost
entirely on math, which cannot represent the full scope of
proof engineering.

However, these advantages have not led to flourishing de-
velopment of declarative NTP on Isabelle. Only 8 out of the
recent 58 arXiv papers [21] are based on Isabelle. On the
other hand, researchers have turned to Lean, where they have
had to settle for impure declarative approaches that interweave
tactics due to Lean’s limited automation infrastructure; they
have also expended significant resources building and expand-
ing declarative-style training corpora. Even these imperfect
methods yield excellent results [3], [4].

Evidently, something impedes the development of declar-
ative NTP in Isabelle, thereby hindering progress across the
entire field, given that we believe Isabelle is the optimal foun-
dation for declarative proof in real-world proof engineering.

We discussed these issues with key figures in the Isabelle
community and NTP researchers [3], [39], [40] who used to
work on Isabelle but have turned to Lean. Their feedback
indicates two major issues for NTP using Isabelle: 1) A con-
current Read-Eval-Print-Loop (REPL) infrastructure for ma-
chine learning is absent; 2). Isabelle’s proof language, Isar,
while highly declarative, is designed to emulate mathemati-
cians’ relaxed writing and is unfriendly for LLMs to learn.
An article [41] reports 76% of failures in their system when
attempting to produce Isar are classified as syntax errors. A
detailed analysis of Isar’s deficiencies in NTP contexts is pro-
vided in § II.

These motivate us to develop a REPL infrastructure for clus-
ters, and more importantly, mitigate Isar’s deficiencies in NTP
by designing a new proof language, MiniLang. An example is
illustrated in fig. 1d. MiniLang eliminates unnecessary features
designed for human usability and readability, aiming to distill
the essential elements of declarative proofs (§ III).

However, as a new language, no corpus exists for MiniLang,
making it challenging to train LLMs on it. To overcome this,
a rule-based translator from Isar to MiniLang is built (§ IV).
Using it, we translate ∼85% of AFP into MiniLang, obtaining
a large corpus of real-world proof engineering. Consequently,
we are able to evaluate MiniLang by fine-tuning NTP models
over MiniLang and Isar, to compare the two (§ V).

The result shows that MiniLang brings up to 29% increment
on PISA, a benchmark consisting of ∼3K randomly selected
proof goals from AFP, in comparison to generation of Isar
alone. We summarize the paper’s contributions as follows.

• We explore the impact of proof languages on the perfor-
mance of NTP for the first time, with a specific focus on
real-world proof engineering goals.

• We present MiniLang, the first proof language specifically
designed for declarative NTP. It mitigates Isar’s human-
friendly but machine-unfriendly features.

• We develop a translator from Isar to MiniLang that suc-
cessfully converts 85.28% of AFP proofs.

• We present a socket-based Isabelle REPL infrastructure,
capable of cluster usage.

Though this research is based on Isabelle, our contributions
extend beyond any single proof assistant. By answering the
following research questions, this work offers a novel direction
for improving NTP via proof language redesign (RQ1, RQ2),
and experience in training NTP with custom languages (RQ3).

RQ1: Can we effectively improve the declarative NTP by re-
designing the underlying proof language?
Yes. Models on MiniLang supersede the models on Isar
by 29% with pass@1 on PISA, while the training corpus
of MiniLang stems from an ∼85% portion of Isar’s.

RQ2: Is improvement confined to syntax error reduction or are
reasoning errors also reduced
MiniLang reduces not only syntax errors but also reason-
ing errors, with the performance gains extending well
beyond mere syntactic correctness.

RQ3: For a freshly crafted proof language, how can we obtain
effective training corpora for this language?
Rule-based translation is an approach, which is effective
even when the translation is incomplete (∼15% entries
fail to be translated in our case).

II. ISSUES IN ISAR

Our journey begins with analyzing Isar’s potential issues
that impose unnecessary learning burdens on LLMs.

A. Mathematician-Friendly but Machine-Unfriendly

Isar is a human-readable language specially designed for
presenting proofs in a style resembling mathematicians’ pen-
and-paper writing. While we believe the declarative style of
Isar is appropriate for NTP, specific design choices of Isar are
not optimised for this purpose.

When chaining proof steps, Isar prefers connectives and
context-sensitive indirect references while avoiding direct use
of names. Examples include connectives (from, with, then,
thus, hence, also, moreover, ultimately , finally) and pro-
nouns (this, that). While this makes proof scripts flow
more like human writing, it also introduces ambiguities. The
exact references of these pronouns depend on the contextual
connectives used. Subtly incorrect uses of these connectives
can cause unexpected behaviors in critical proof operations
like case split and induction, leading to proof failures. Worse
still, there is no local syntactic way to correct such errors, as
the semantics of these connectives are closely related.

Isar even exploits English ambiguity to hide important
technical distinctions from readers. Examples include (also,
finally) vs. (moreover, ultimately). In English,
these pairs are virtually indistinguishable. However, in
Isar, they have subtly different behaviours. (moreover,
ultimately) collect lemmas as arguments for later ATPs,
while (also, finally) apply transitive calculation over the
collected lemmas (e.g., to infer a1 ≤ an from a1 ≤ a2, · · · ,
an−1 ≤ an). It is possible that these unnecessary complexities
create difficulties for representation-based LLMs, especially
when these keywords appear interchangeably in the pretraining
data.

Conversely, it is common in Isar for there to be multiple re-
dundant ways to express the same proof procedure. Examples
include fig. 2a which allows a forward writing starting from
an assumption A, stepwisely establishing a series of lemmas
{Bi}n, and finally reaching the conclusion C. Except for the
writing flow, fig. 2a is behaviorally identical to the more com-
mon fig. 2b.

Redundant syntax and syntactic sugar might be harmless to
humans. However, the situation differs for NTP due to cor-
pus scarcity. When training data for one syntactic form is
insufficient, redundant syntax either dilutes the already limited
corpus or requires LLMs to expend additional effort learning
that different representations are semantically equivalent.

{
fix x
assume A
have B1 by t1 ...
have Bn by tn
have C by u

}

(a) One possible way

have C if A for x
proof -
have B1 by t1 ...
have Bn by tn
show C by u

qed

(b) A more common way

Fig. 2: Two redundant ways of introducing lemmas in Isar

B. Legacy burdens on Isabelle’s proof languages

Isar is neither the unique nor the original proof language of
Isabelle. Before Isar, Isabelle used a backward tactic language
resembling Coq, e.g., subgoal for x apply tac1 apply tac2
done. Isar’s design is self-contained and capable of fully re-
placing the old language. However, the obsolete language has
been preserved for compatibility reasons. As a result, the old
language still appears in the AFP corpus, and some authors
mix both languages when they find legacy features more con-
venient. This preservation has exacerbated syntax redundancy
issues. An example is proof tac ≡ apply tac proof −, which
causes proof to provide redundant functionality that overlaps
with apply, violating the principle of minimality.

III. MINILANG: A MINIMAL PROOF LANGUAGE

Isar is designed for generic logics, human-readable presen-
tations, and convenient use for human experts. Many of these
design choices introduce redundant elements that complicate
LLMs’ learning. This motivates us to propose MiniLang, a
minimalist proof language for Isabelle/HOL that eliminates
unnecessary syntax elements and language constructs, aiming
to distil declarative proofs to their essential form.

A. Syntax

Both Isar and MiniLang structure proof scripts as sequences
of statements, where each statement begins with a keyword
called a command.

Proof-Script ::= (Statement)+

Statement ::= Command (Argument)∗

When Isar contains over 29 commands, MiniLang minimizes
this number to 5 core commands + 8 extensions for common
operations + 3 for the compatibility with Isar. Table I summa-
rizes these commands, while their formal syntax is defined in
our supplementary Reference Manual.

B. The Proof Model and Semantics

Both Isar and MiniLang are imperative in the sense that ev-
ery statement manipulates an underlying state machine (fig. 3)
that represents proof states and their transitions.

Isar’s state machine consists of three modes (forward, back-
ward, chaining) and hierarchies of nested sub-proofs, making
it relatively complex and difficult to formalize. By contrast,

TABLE I: MiniLang’s Commands.

Command Description

Core Commands for Declarative Proofs
INTRO moves all hypotheses of the proof goal and fixes

all ∀-quantified variables into the context.
HAVE introduces intermediate lemmas.
CONSIDER fixes variables subject to certain conditions and/or

analyzes the proof goal by cases.
END ends the proof of a subgoal or the top goal.
NEXT ends the proof of a subgoal and turns to the next

sibling subgoal.
Extensions for Common Proof Operations
RULE deduces the goal by a given rule or a default rule

chosen by Isabelle. A rule specifies how to derive
a conclusion or how to destruct a hypothesis.

SIMPLIFY rewrites the goal using Isabelle’s system simplifier.
UNFOLD unfolds user-specified definitions.
CHOOSE x instantiates leading ∃ in the goal by a witness x.
CASE_SPLIT applies structural case analysis to the goal.
INDUCT applies induction to the goal.
LET defines abbreviations of terms.
NOTATION defines syntactical notations.
Auxiliary Commands for Compatibility with Isar Proofs

CONFIG configures Isar attribute system.
OPEN opens either Isar bundles or Isar modules (locales).
APPLY applies arbitrary tactics as users want, designed for

compatibility only and not recommended to use
because tactics undermine declarative proofs.

MiniLang employs a simpler state machine where each state is
represented as a labeled tree organizing subgoals into contexts:

Tree ::= Leaf | (label: Context, children: Tree+)
Context ::= (a set of variables, a set of named hypotheses)

Leaf ::= Context ⊢ Goal Goal ::= Term

Leaves represent unproven subgoals that require proofs. Each
non-leaf node groups related subgoals that share a common
context, typically arising from the decomposition of a larger
proof goal. The resulting tree provides an organized hierarchy
of outstanding proof obligations at a given state. For example,
the resulting tree after executing the statement CONSIDER k
where "m = 2 * k" at line 13 of fig. 1d is

({m,n}, {
√
2 ∈ Q,A1,A2,B,C,D})

(∅,∅)

(∅,∅) ⊢ ∃k.m = 2k ({k}, {m = 2k}) ⊢ 2 dvd m

(∅, {2 dvd m}) ⊢ False

The tree contains three subgoals arranged left to right. The
leftmost subgoal (opened by line 13) requires proving the ex-
istence of k. The middle subgoal, opened by HAVE E at line
12, is the parent of the first subgoal. Its context has variable k
fixed with condition m = 2k, allowing it to use this condition
once the first subgoal establishes k’s existence. Similarly, the
rightmost subgoal (False) is the top goal of the entire proof.

Tree

Initial State: a tree of single leaf (∅,∅) ⊢ G

Proof
completesCommand

END
if the state is a leaf that is
provable by ATP (§ III-E)

Fig. 3: MiniLang’s state machine for proving proposition G.

It can utilize the conclusion (2 dvd m) from the middle sub-
goal. Each leaf subgoal’s context includes all labeled contexts
from its ancestors in the tree, so all subgoals can access the
previously established lemmas A1, A2, B, C, D.

The initial state is the tree of a single root node that repre-
sents the top goal itself, e.g.,(

(∅,∅) ⊢
√
2 /∈ Q

)
(1)

The semantics of every MiniLang statement is defined as a
transition that replaces either the leftmost leaf or the leftmost
non-leaf node of the tree of a state. For example, the transition
of the RULE at line 2 replaces the leftmost leaf (i.e. the root
node (1) in this example),(
(∅,∅) ⊢

√
2 /∈ Q

) RULE−−−−→
(
(∅,∅) ⊢

√
2 ∈ Q −→ False

)
It reduces the goal by applying the rule of contradiction (which
is the default rule of /∈, as configured in Isabelle).

The next INTRO resembles Coq’s intros. It moves all
hypotheses in the goal into the context and binds them to
generated fresh names. It also fixes all ∀-quantified variables
into the context. Generally for any variable set Θ, hypothesis
set Γ, variables {xi}m, and propositions {Hi}n, G,

(Θ,Γ) ⊢ ∀x1, · · · , xm. H1 −→ · · · −→ Hn −→ G

INTRO−−−−−→ (Θ ∪ {xi}m,Γ ∪ {namei : Hi}n) ⊢ G

HAVE and CONSIDER are the key to declarative proofs.
HAVE G′ introduces a subgoal G′ so that the conclusion of
the goal can be used in proving the contextual goal G in which
HAVE G′ is placed.

· · ·

(Θ,Γ) ⊢ G · · ·

· · ·

(Θ,Γ)

(∅,∅) ⊢ G′ (∅, {G′}) ⊢ G

· · ·HAVE G′

CONSIDER merges Isar’s obtain and consider (as both
commands perform elimination of disjunctive connectives). It
then has two usages. CONSIDER x where P (x) fixes a vari-
able x subject to P (x) if such variable exists.

· · ·

(Θ,Γ) ⊢ G · · ·

· · ·

(Θ,Γ)

(∅,∅) ⊢ ∃x. P (x) ({x}, {P (x)}) ⊢ G

· · ·CONSIDER
x where P (x)

CONSIDER can also split a goal by cases. As an instance,
CONSIDER x > 0 | x = 0 | x < 0 divides the proof into
three cases, when x is positive, is zero, or is negative.

· · ·

(Θ,Γ) ⊢ G · · ·

· · ·

(Θ,Γ)

(∅,∅) ⊢ P ∨Q (∅, {P}) ⊢ G (∅, {Q}) ⊢ G

· · ·

CONSIDER P | Q

HAVE and CONSIDER provide sufficient structural con-
structs for declarative proofs, allowing complex proof goals
to be recursively decomposed into subgoals simple enough for
an ATP . These subgoals are then closed by statement END
or NEXT, which invokes the ATP to prove the subgoals.

R

(Θ,Γ) ⊢ G A1 · · · An

R

A1 · · · An

(2)

END, NEXT

if n ≥ 1 and G is
provable by ATP

END and NEXT actually have the same semantics. The two
versions are introduced just for the sake of readability.

The ATP used by END and NEXT is parameterized. Our
implementation uses Sledgehammer* (§ III-E). If the ATP
fails to prove the goal, an error is raised.

END and NEXT are the only ways to conclude a subgoal.
Even when another command like APPLY is capable of prov-
ing a subgoal, MiniLang intentionally leaves a placeholder
(Θ,Γ) ⊢ True that must be explicitly closed by END or
NEXT. This ensures well-structured MiniLang proofs.

The transition diagram (2) requires n ≥ 1, but it is still
complete because MiniLang ensures that any non-leaf node in
the tree of any state must have two or more children. This in-
variant is preserved through the following automatic reduction
rule that is applied whenever possible:

· · ·

(Θ1,Γ1)

(Θ2,Γ2) ⊢ G

· · ·

(Θ1 ∪Θ2,Γ1 ∪ Γ2) ⊢ G

Automatic Reduction

Finally, a special use of END is to conclude the final top
goal at last, e.g., line 19 in fig. 1d. The entire proof process
in MiniLang thus consists of using commands to operate the
state machine, to transform the proof state until the proof is
completed with this final END, as illustrated in fig. 3.

C. Other Commands and Mechanism

In addition to the structural proof commands, MiniLang pro-
vides commands for common proof operations like induction
and structural case analysis (analysis over constructors of a
term). The semantics of these commands are defined in the
Reference Manual attached to our supplementary materials.

Admittedly, these commands can be viewed as a certain
kind of tactic. However, they are designed to have a general
semantics that mirror standard operations in pen-and-paper
proofs. Therefore, the presence of these commands does not

undermine the alignment between the formal proofs and pen-
and-paper proofs. Thus, we consider these commands rela-
tively harmless to declarative proofs.

MiniLang also introduces a transparent automatic calcula-
tion mechanism to eliminate the need for the calculation key-
words also and finally (cf. § II) in most cases. Isar’s calcu-
lation is about extending (order-theoretical) chains, e.g., using
An ≤ An+1 to extend a chain A1 ≤ · · · ≤ An to derive
A1 ≤ An+1. MiniLang maintains a series of chains internally.
Once a proposition P is proven, MiniLang checks if P can
extend any existing chain at its tail. If so, all feasible chains
are extended; otherwise, P initiates a new chain of length 1 in
the internal series. Once a chain {Ai}n reaches a length of 2
or more, indicating a derivation has occurred, the calculation
result A1 ≤ An is added into the context or updated if it
is already there. This allows users to reference the calculated
result without explicit uses of also and finally. Though
not complete, this approach can replace many uses of also
and finally, reducing the concepts involved in MiniLang.

D. Soundness
Because MiniLang’s proof operations are ultimately defined

in terms of Isabelle’s existing kernel operations and SMT inter-
faces, these present no new threats to soundness in comparison
to Isar.

E. Sledgehammer* : An Improved Sledgehammer
MiniLang uses an improved version of Sledgehammer as its

ATP backend to verify declarative proofs.
The core function of Sledgehammer is premise selection

— selecting from a database the relevant lemmas that can
possibly help to prove a given goal. These lemmas are later
sent to SMT solvers to finally obtain a proof of the given goal.

This premise selection is based on heuristics [42] and clas-
sical machine learning methods like k-NN [43]. MiniLang
improves this by providing syntax that allows LLMs to suggest
relevant lemmas and identify those that should be avoided:

END / NEXT WITH relevant-lemmas WITHOUT avoided-lemmas

The lemmas are hints that Sledgehammer* preferentially (but
not mandatorily) considers for use or avoidance. If a lemma is
not found in the context (i.e., undefined reference), it is simply
ignored as it is merely a hint. This mitigates problems when
LLMs generate non-existent lemmas due to hallucinations.

We also improve on Sledgehammer’s integration with Is-
abelle’s simplification system. First, tactic auto is applied
before invoking Sledgehammer, which rewrites the goal using
Isabelle’s system simplifier. If auto timeouts, a safer tactic
clarsimp is used instead. Second, we use a simplification-
based brute-force tactic fastforce in parallel to Sledge-
hammer as an additional ATP backend. Moreover, the anno-
tated lemmas in the WITH clause are also sent to the tactics.
However, these tactics require the lemmas to be labelled by
their intended usage, such as rewrite rules or introduction rules
used for sequent calculus. We build a heuristic to guess the
usage of a given lemma from its name and expression. This
exploits the full power of the tactics.

IV. TRANSLATION FROM ISAR TO MINILANG

Training NTP models requires substantial proof data, which
does not exist for our newly designed language. We address
this through automated translation from Isar to MiniLang,
successfully converting 85.28% of AFP’s proofs, obtaining
∼285K proofs from AFP’s ∼324K proofs.

Moreover, this translation process highlights three key
strategies that embody our minimalist principle for redesigning
a proof language to enhance the performance of NTP:

• Elaboration: Make implicit information explicit by ex-
posing hidden details in a clear, structured manner;

• Normalization: Consolidate diverse approaches for
achieving the same logical purpose;

• Elimination of tactics: Eliminate tactics except for
canonical ones that indicate key proof steps and mirror
common operations in pen-and-paper proofs.

A. The Translation Process

The translation process includes 20+ passes, each of which
represents one step from an intermediate language to another
closer to MiniLang.

1) Parse text into Abstract Syntax Tree (AST).
2) Elaboration & Normalization

• Unfolding sugars and macro variables like ?thesis
and ?case. Add type annotations to variables.

• Assign anonymous lemmas with generated names.
• Resolve pronouns this and that.
• Normalize all connectives into using and reference

lemmas by explicit names, e.g. have A ... then have B
by t ≡ have A ... have B using A by t

• Isar provides two ways to reference lemmas, by name
or by expression of the proposition. This step replaces
expression-based references with name references.

• Rewrite the obsolete subgoal statement into the usual
proof-qed structure.

• Tactics can occur in proof, qed, apply, by. We nor-
malize the various ways of applying tactics into apply.

• Definition unfolding can be invoked either by tactic
unfold_tac or by command unfolding. We normal-
ize them to unfold_tac.

• proof-qed blocks can contain multiple next-separated
sub-blocks, each of which may contain multiple show
statements, and each statement may target multiple
goals. These elements can appear in arbitrary orders.
We normalize the structure so that each proof block
targets exactly one goal, and all blocks are ordered
consistently with their corresponding goal occurrences.

• Isar variables and hypotheses are selectively fixed into
the context in arbitrary order. We normalize this by
requiring all variables and hypotheses to be declared
at the proof body beginning in their occurrence order.

• Tactics induct_tac, induct and case_tac are
subtle variants of induction and case. This step
normalizes the former into the latter.

• Normalize tactic goal_cases into the standard
proof - case - qed structure.

• Normalize bracket structure (e.g., fig. 2a) into proof-
qed structure (e.g., fig. 2b).

• Tactics can be combined by combinators (,+?|[n]).
We eliminate combinators and normalize tactic appli-
cations into sequences of atomic tactics.

• One tactic can affect multiple goals (e.g., auto affects
all goals). We restrict such tactics and duplicate their
applications as needed to ensure that each application
targets only the leading goal.

3) Translating into MiniLang. By this stage, most redundant
Isar statements have already been eliminated. The remain-
ing normalized statements are translated into their cor-
responding MiniLang equivalents: obtain and consider
7→ CONSIDER, apply 7→ APPLY, done 7→ END or
NEXT, have 7→ HAVE, proof 7→ INTRO ...

4) Refinement. Tactic applications still remain after step 3.
To obtain more pure declarative proofs, we eliminate
these tactics by repeatedly applying the following
substitution until further substitution would cause END
to fail to prove the goal using the ATP .

APPLY tactic END WITH w WITHOUT wo

7→ END WITH w lem+ WITHOUT wo lem− (3)

where lem+, lem− are respectively positive and negative
lemma arguments of tactic, indicating lemmas to use and
avoid, e.g., auto add: lem+ del: lem−. Addition-
ally, some common tactics have specialized substitutions
mapping them into specific MiniLang statements, e.g.,

APPLY (auto args) 7→ SIMPLIFY args

APPLY (simp args) 7→ SIMPLIFY args

APPLY (unfold_tac defs) 7→ UNFOLD defs

B. Analysis of the Translation Result

Many translation rules are incomplete or unsafe. Conse-
quently, the resulting translations may not always pass Is-
abelle’s proof check. Failed proofs are discarded, and we suc-
cessfully obtain 85.28% of the entire AFP corpus.

To analyze the quality of the translation in depth, we exam-
ine the occurrence frequency of every command in the trans-
lated corpus, as shown in fig. 4. END and NEXT are the
most frequent commands. This is because (1) every goal and
subgoal must be closed by END or NEXT, and (2) 42.65%
of AFP proofs are simple enough to be proven directly by
Sledgehammer*, requiring only a single END statement.

HAVE constitutes the next largest portion. This confirms
its central role in declarative proofs, thus providing a metric
for evaluating how well our translation preserves declarative
structures: the translation success rate over proofs containing
different numbers of have and hence (which are the source
of HAVE). Illustrated in fig. 5, when the number of have
and hence increases, the translation success rate decreases
rapidly. This is expected because more complex proofs in-
troduce additional corner cases not covered by our translation

HAVE 17.7%

CONSIDER 2.1%

END 39.6%INTRO 2.4%

APPLY 6.7%

INDUCT 2.2%

RULE 4.6%

CASE.S. 2.1%
Others 3.8%

NEXT 19.0%

Fig. 4: Distribution of MiniLang Commands in the Translation

0 1 2 3 4 5 6 7 8 9 10 13 16 20 30 cmds

0.1%

1.0%

10.0%

100.0%

Isar: 0.04%
MiniLang: 0.02% 20.0%

40.0%

60.0%

80.0%

100.0%

Isar: 77.40%
MiniLang: 83.45%
Success: 89.51%

Isar (log)
MiniLang (log)
Success (linear)

Fig. 5: Solid line: translation success rate on proofs containing
different numbers of have and hence commands (cmds).
Dashed and dot lines: Distributions of the number of HAVE
and have + hence in the translated and the original proofs.

rules. Nonetheless, this number is not more than 5 for most
proofs (> 93.0%), where the success rate still remains above
71.5%. Thus, this translation process is still acceptable in pre-
serving most declarative proofs seen in the corpus.

Finally, the portion of APPLY reduces from 37.2% to 6.7%.
It means a large number of tactics that harm the purity of
declarative proofs are eliminated, though some of them are
still present and demand more translation rules to cover them.

V. EVALUATION

Having obtained a substantial corpus through translation,
we evaluate the impact of proof language redesign on NTP
performance by building and comparing NTP systems over
both Isar and MiniLang. Based on the evaluation result, we
answer the following research questions:

RQ1: Can we effectively improve the declarative NTP by re-
designing the underlying proof language?

RQ2: Is improvement confined to syntax error reduction or are
reasoning errors also reduced?

RQ3: For a freshly crafted proof language, how can we obtain
effective training corpora for this language?

A. NTP & Evaluation Setup

While numerous design choices exist for building NTP sys-
tems [4], [39], [44], best practices for real-world proof engi-
neering contexts remain unclear. To minimize uncertainties in
this evaluation, we adopt a methodology for LLM prompting
and context provision inspired by Baldur [2], a leading prior
work in LLM-based NTP on Isabelle (§V-A4). We conduct

Supervised Fine-Tuning (the most basic approach in LLM-
based NTPs) to perform whole proof generation in a setting
analogous to Baldur. However, we exclude Baldur’s proof re-
pair method to focus purely on the language comparison.

1) Base Models: To assess MiniLang over multiple
models, we fine-tune two 7B base models: Llemma [45] and
DeepSeek-Prover-Base v1.5 (DPSK-PB) [39]. Both models
specialize in formal reasoning, having been pre-trained on
datasets from major proof assistants including Coq, Lean,
and Isabelle.

2) Datasets: We use Isabelle AFP version 2025-02-12 [36],
Isabelle 2024 HOL libraries [35], and their MiniLang trans-
lations as our fine-tuning datasets. Unreachable code, proofs
of the benchmark targets such as PISA, and long proofs that
exceed the LLMs’ context window are removed. Our Isar fine-
tuning dataset based on the AFP is made up of ∼332K proofs.
During the ablation study detailed in §V-B, we convert this
dataset into separate versions for each proof language detailed
in table II, resulting in four datasets in total, so that each exper-
iment is conducted with a model fine-tuned to that particular
proof language.

We use PISA [11] as our evaluation benchmark. PISA orig-
inally contains 3K goals randomly selected from Isabelle AFP
version 2022-12-06. Due to ongoing development of Isabelle
and AFP, some goals have been moved or removed from the
newer version. We manually updated the dataset to AFP ver-
sion 2025-02-12, removing goals that are no longer available,
resulting in 2,962 goals.

3) Data Contamination: After private conversations with
authors of DPSK-PB, we believe it is likely that PISA is
present in their training data, as no deliberate steps were taken
to exclude it. Llemma claims explicitly that they removed
from their training data any proofs whose names appear in
PISA [11].

Nevertheless, any data contamination is more likely to
falsely inflate the performance of Isar compared to MiniLang,
since MiniLang programs do not appear in either DPSL-PB
or Llemma’s training data, and we have ensured that PISA is
not present in the fine-tuning MiniLang corpus. Thus, such
contamination would minimally undermine the conclusion
of the paper if the performance of MiniLang is significantly
better than that of Isar.

4) Prompt Setup: Following Baldur’s approach, we use a
simple prompt setup with two parts: context and goal. Con-
text includes declarations, lemmas, and proofs immediately
preceding the goal in the same file. The goal contains the
name and statement. Given the 4K token context window for
both Llemma and DPSK-PB, we reserve 2K tokens each for
context and goal, truncating distant content when necessary.

5) Supervised Fine-Tuning (SFT): We use LLaMA-Factory
[46], a widely used LLM training framework to train Llemma
and DPSK-PB with supervised fine-tuning. Both models are
fine-tuned for 2 epochs with a batch size of 256. The learning
rate is set to 2×10−5 , and linearly scaled to 0 during training.
The training is run on 8 Nvidia H200 GPUs, and each takes
around 12 hours to finish.

TABLE II: PISA evaluation of models over MiniLang and Isar

Base Model Lang. pass@1 pass@8

DPSK-PB MiniLang 69.1% 79.2%
DPSK-PB Isar + SH* 63.9% 74.3%
DPSK-PB MiniLang - SH* 35.5% 44.9%
DPSK-PB Isar 40.2% 50.5%

Llemma MiniLang 68.0% 78.9%
Llemma Isar + SH* 63.3% 72.1%
Llemma MiniLang - SH* 35.2% 44.6%
Llemma Isar 38.6% 48.6%

6) Proof Check: We sample a model’s inference k times for
each benchmark entry to obtain the pass@k. We run Isabelle
to check every sample. If any of the samples passes the proof
check, the entry is considered passed. The pass@k is then the
portion of the passed entries in the PISA test set.

Our extended Sledgehammer* includes a self-learning sys-
tem that maintains local databases of premise-goal connec-
tions. Performance on a goal improves when Sledgehammer*
has previously encountered similar problems. For fair compar-
ison, we reset Sledgehammer*’s database before each model
evaluation. Nonetheless, this also means our results underes-
timate real-world performance, where Sledgehammer* would
retain contextual knowledge and perform better.

B. Result

Based on the evaluation results of the SFT over Isar and
MiniLang as listed in table II, we answer the three research
questions posed at the beginning.

1) RQ1. Effectiveness of Redesigning Proof Language: To
answer RQ1, we compare our redesigned language MiniLang
against Isabelle’s original language Isar. The results demon-
strate substantial improvements of ∼29% across both base
models and evaluation metrics.

Furthermore, to better understand the sources of this im-
provement, we conduct an ablation study. Prior work [29],
[31] has demonstrated that the adoption of ATP tools like
Sledgehammer can bring significant performance gains. Since
MiniLang incorporates Sledgehammer* by design while Isar
does not, we create two sets of comparisons: In the first set,
we apply the same substitution principle as formula (3) to
create Isar + SH*, which replaces tactics in Isar proofs with
Sledgehammer* while preserving other declarative structures.
This enables comparison between MiniLang and a hypotheti-
cal version of Isar with equivalent ATP support. In the second
set, we disable substitution (3) and any Sledgehammer* calls
to obtain MiniLang - SH*, allowing comparison with Isar
without ATP enhancement. We emphasise that MiniLang is
designed from the ground up to be used with ATP support,
so these numbers are only presented to help separate out the
sources of MiniLang’s performance improvements.

When Sledgehammer* is equally enabled, corresponding to
a declarative NTP scenario, MiniLang constantly outperforms

Fig. 6: Failures in the fine-tuned DPSK-PB and Llemma.

Isar across both base models and evaluation metrics (pass@1
and pass@8) by ∼5%. This is sufficient to show:

RA1: Redesigning the proof language can effectively
improve the performance of declarative NTP.

When Sledgehammer* is disabled, proofs rely completely
on tactic applications, turning the scenario into tactic-based
NTP. In this case, MiniLang no longer maintains its advantage
and falls behind Isar by ∼5%. This is reasonable given that
MiniLang is specifically designed for declarative proofs.

Particularly, MiniLang restricts every tactic application to
act only on the leading subgoal. While this brings clearer proof
structure and better alignment between tactics and subgoals,
it also causes difficulties for proof generation. LLMs can no
longer use one terminating tactic (e.g., fastforce, auto)
to conclude all subgoals. Instead, LLMs must repeat the tactic
exactly n times for n subgoals. LLMs must precisely simulate
the effect of every tactic application to trace the proof state, to
know how many subgoals remain. This is extremely difficult
without interaction with proof assistants, even for humans. In-
deed, 37.4% proof failures are due to premature proof termina-
tion with unproven subgoals remaining — models incorrectly
assume that the generated tactics are sufficient when they are
not. In contrast, in Isar, LLMs can always mindlessly apply
terminating tactics to try to conclude all subgoals, regardless
of the number of subgoals and the shape of the proof state.
Therefore, the performance loss of MiniLang - SH* is rea-
sonable, since MiniLang’s elaboration properly exposes the
inherent difficulties of tactic-based NTP.

Finding: A beneficial proof language for declarative NTP
is not necessarily beneficial for tactic-based NTP.

2) RQ2. Sources of Performance Improvement: We com-
pare the failure causes of proofs generated by MiniLang and
Isar + SH* in the pass@1 test. The result is shown in fig. 6.
MiniLang significantly reduces syntax errors in the proofs.
However, this accounts for only 1% of the 5% total improve-
ment. More significantly, MiniLang reduces failures in proof
operations and Sledgehammer* calls, meaning the generated
MiniLang proofs are more likely to be correct. This indicates
that the language design helps LLMs generate higher-quality
proofs, not merely syntactically correct text.

RA2: The improvement brought by redesigning the proof
language can extend beyond syntax errors to enhance
models’ capability of generating logically correct proofs

We also observe a slight increase in term language errors
for MiniLang, despite no modifications to this aspect of the
language. This likely reflects the sequential nature of our error
analysis, which reports only the first error encountered —
as MiniLang resolves certain types of errors, other unrelated
issues may become more visible in the error categorization.

3) RQ3: Training Corpora for a New Proof Language: The
MiniLang training corpus is obtained by translating Isabelle’s
AFP. The translation process is incomplete, losing ∼15% of
proofs, with higher loss rates observed for longer declarative
proofs (fig. 4). Despite this data reduction, MiniLang’s ex-
perimental results still demonstrate clear advantages due to
language improvements. This validates the effectiveness of our
translation-based approach.

RA3: Rule-based translation is an effective approach to
obtain training corpora for freshly crafted proof languages.

VI. RELATED WORKS

A. NTP for Math Competitions vs. Real-world Engineering

Early NTP works stem from the intersection of the time-
honored interactive theorem proving and the emerging ma-
chine learning field, mainly pushed by researchers who wish
to improve the automation of the provers [43], [47]–[53].

Later, when LLMs achieved breakthrough progress in nu-
merous domains including math, researchers took notice of
models’ formal reasoning capabilities and introduced a series
of competition-based benchmarks [5], [7], [8]. In the following
years, NTP works focusing on math competitions emerged in
abundance [3], [4], [39]–[41], [44], [54].

However, math competitions cannot represent real-world
proof engineering. Substantial gaps exist between the two.
First, math competitions consider only a fixed and relatively
small domain of textbook-level concepts in number theory,
algebra, analysis, etc. By contrast, real proof engineering
confronts unlimited and diverse cutting-edge concepts across
math, programming languages, computer security, etc. Second,
it remains doubtful whether competition problem-solving
skills translate to real-world proof engineering capabilities.
Researchers [55]–[58] have reported that models’ impressive
performance on informal math benchmarks may stem from
rote memorization of question patterns rather than genuine
mathematical understanding. It is unclear whether models
similarly rely on memorizing proof tactics tailored to specific
competition problems rather than acquiring the authentic
skills that proof engineering requires.

B. Analysis to LLMs’ challenges in learning proof languages

PALM [1] conducts a formative study about failures of a
GPT-based NTP over Coq’s proof language Gallina. First,
this study is based on analysing the direct reasons causing
the failures. It remains uncertain whether these failures stem

from more fundamental issues, such as conflicts between
the proof assistant’s working model and the LLM’s inherent
limitations in symbolic reasoning. By contrast, our work
examines Isabelle’s proof language Isar design issues through
a combined theoretical and experimental approach, offering
deeper insights while acknowledging that a fundamental
understanding remains elusive. Second, PALM’s findings
focus on Gallina, a tactic-based language, while our work
focuses on declarative proofs. Some issues found by PALM
(e.g., bullet and theorem application) cannot be directly
applied to declarative Isar because some notions do not exist
in Isar at all. For example, Isar has no bullet; the theorem
application, which represents 49.6% of failure reasons in
PALM, is not a primary element in declarative proofs.

C. Proof Languages & Representations for Machine Learning

Many works [4], [17], [50], [59], [60] use their own repre-
sentations mixed with proof scripts, proof states, and/or human
solvers’ informal thoughts. Some works transform the syntac-
tical representations of the language, like Passport’s tree repre-
sentation of Coq [61], graph representation of HOL [62], and
the S-expressions adopted by CoqGym [12], MLFMF [63],
and HOList [64]. However, they do not change the core (se-
mantics, proof model) of their proof languages.

Regarding redesigning a proof language to improve NTP’s
performance, the paper is the first to the best of our knowledge.

D. Language Models for Real-World Proof Generation

Pioneers in applying LLMs to generate proofs include
Urban et al. [51] and Polu et al. [52]. Later, a series of
benchmarks sourced from real-world proof engineering are
proposed, such as PISA [11] for Isabelle/HOL, LeanDojo [19]
for Lean, and CoqGym [12] for Coq. Targeting these
benchmarks, abundant works have emerged.

Leading works on PISA and Isabelle/HOL derive from the
declarative NTP approach established by Thor [29]. Thor
exhaustively replaces tactics and other language components
with Sledgehammer to obtain declarative proofs, which are
then used to train LLMs. Thor reaches a success rate of
57.0% on PISA. Baldur [2] extends Thor’s approach by
fine-tuning the LLM Minerva to generate whole Isabelle/HOL
proofs. It also incorporates a repair model that leverages
Isabelle’s error messages to fix broken proofs. Combining
Thor’s approach, Baldur reaches 65.7% with pass@64 on
PISA. Magnushammer [65] adopts contrastive learning to
target premise selection, the same task as Sledgehammer.
Though the topic itself is irrelevant to the proof generation
by LLMs, its combination with Thor reaches the previous
state-of-the-art, a success rate of 71% on PISA. Our work
applies supervised fine-tuning in a similar setting to Baldur,
with differences: 1) we use MiniLang as the proof language;
2) unlike Thor, MiniLang eliminates only tactics while
preserving other declarative statements; 3) we employ more
recent base models; 4) we do not incorporate proof repair
mechanisms. Under a smaller computation budget (500s

timeout, 16 CPU cores, and up to 8 attempts) than Magnus-
hammer, we achieve a success rate of 79.0%. Our end-to-end
results represent new state-of-the-art for PISA performance.

Works in Coq, Lean, and Metamath either follow a search-
based approach or generate whole proofs including all tactics.

Most search-based works stem from Polu and Sutskever’s
stepwise best-first proof search [52]: at each iteration, they se-
lect and expand the open subgoal whose sequence of generated
proof-steps has the highest cumulative log-probability under
the model. It reaches 56.5% with pass@32 on 1000 randomly
selected Metamath goals from set.mm library. ReProver [19]
improves the search by introducing premise selection at ev-
ery iteration. It reaches 51.2% with pass@1 on LeanDojo’s
random split and 26.3% on the novel-premise split. Lean-
STaR [66] integrates informal thoughts and reaches 39.4%
with pass@1 on LeanDojo’s novel-premise.

Regarding whole proof generation, PAML [1] follows a
generate-then-repair approach similar to Baldur, but uses a
rule-based repair mechanism instead of another LLM.

VII. DISCUSSION

A. Potentials in Extending MiniLang to Other Proof Assistants

While this work implements MiniLang in Isabelle/HOL, it is
possible to port at least the core of MiniLang to other proof as-
sistants like Lean. The key is that MiniLang targets declarative
proof, where the notions are general across specific logics and
software systems. Although some commands (e.g., CONFIG)
are specifically designed for compatibility with Isar proofs,
most MiniLang commands have their correspondences in other
proof assistants. Examples include Lean’s have, simp, use,
intros, cases, and induction. Relying on powerful
ATPs, we believe most disparities between proof assistants
can be harmonized. Hopefully, MiniLang can serve as a bridge,
preventing the long-standing fragmentation in the field of proof
assistants from spreading into the field of NTP.

VIII. LIMITATIONS AND FUTURE WORK

A benefit of MiniLang’s proof model is that its proof state
integrates all subgoals and contextual information in a struc-
tural way. This paper focused on whole proof generation. Fu-
ture work could explore Baldur-style proof repair, or stepwise
approaches that could leverage this proof state structure, such
as reinforcement learning.

In the whole proof generation setting, further work could be
done to refine the provided LLM context - the current approach
simply takes the most recent items from the same file. Better
premise selection could look across multiple files to create
contexts with more relevant information.

We leave these mentioned aspects to our future work.

ACKNOWLEDGMENT

The REPL infrastructure, MiniLang interpreter, translator,
training data, machine learning framework, Sledgehammer*,
and parameters of the finetuned models will be open-sourced
and are present in the submitted supplementary materials.

REFERENCES

[1] M. Lu, B. Delaware, and T. Zhang, “Proof automation with large
language models,” in Proceedings of the 39th IEEE/ACM Interna-
tional Conference on Automated Software Engineering, ser. ASE ’24.
New York, NY, USA: Association for Computing Machinery, 2024, p.
1509–1520.

[2] E. First, M. N. Rabe, T. Ringer, and Y. Brun, “Baldur: Whole-proof
generation and repair with large language models,” in Proceedings of
the 31st ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, ser. ESEC/FSE
2023. New York, NY, USA: Association for Computing Machinery,
2023, p. 1229–1241.

[3] Z. Z. Ren, Z. Shao, J. Song, H. Xin, H. Wang, W. Zhao,
L. Zhang, Z. Fu, Q. Zhu, D. Yang, Z. F. Wu, Z. Gou, S. Ma,
H. Tang, Y. Liu, W. Gao, D. Guo, and C. Ruan, “DeepSeek-Prover-
V2: Advancing Formal Mathematical Reasoning via Reinforcement
Learning for Subgoal Decomposition,” 2025. [Online]. Available:
https://arxiv.org/abs/2504.21801

[4] H. Wang, M. Unsal, X. Lin, M. Baksys, J. Liu, M. D. Santos,
F. Sung, M. Vinyes, Z. Ying, Z. Zhu, J. Lu, H. de Saxcé, B. Bailey,
C. Song, C. Xiao, D. Zhang, E. Zhang, F. Pu, H. Zhu, J. Liu,
J. Bayer, J. Michel, L. Yu, L. Dreyfus-Schmidt, L. Tunstall, L. Pagani,
M. Machado, P. Bourigault, R. Wang, S. Polu, T. Barroyer, W.-D.
Li, Y. Niu, Y. Fleureau, Y. Hu, Z. Yu, Z. Wang, Z. Yang, Z. Liu,
and J. Li, “Kimina-prover preview: Towards large formal reasoning
models with reinforcement learning,” 2025. [Online]. Available:
https://arxiv.org/abs/2504.11354

[5] K. Zheng, J. M. Han, and S. Polu, “miniF2F: a cross-system benchmark
for formal Olympiad-level mathematics,” in 10th International Confer-
ence on Learning Representations (ICLR), Virtual Event, April 2022.

[6] G. Tsoukalas, J. Lee, J. Jennings, J. Xin, M. Ding, M. Jennings,
A. Thakur, and S. Chaudhuri, “PutnamBench: Evaluating Neural
Theorem-Provers on the Putnam Mathematical Competition,” in Annual
Conference on Neural Information Processing Systems (NeurIPS), Van-
couver, BC, Canada, December 2024.

[7] C. Liu, J. Shen, H. Xin, Z. Liu, Y. Yuan, H. Wang, W. Ju, C. Zheng,
Y. Yin, L. Li, M. Zhang, and Q. Liu, “FIMO: A Challenge Formal
Dataset for Automated Theorem Proving,” 2023. [Online]. Available:
https://arxiv.org/abs/2309.04295

[8] Z. Azerbayev, B. Piotrowski, H. Schoelkopf, E. W. Ayers, D. Radev,
and J. Avigad, “ProofNet: Autoformalizing and Formally Proving
Undergraduate-Level Mathematics,” 2023. [Online]. Available: https:
//arxiv.org/abs/2302.12433

[9] J. Liu, X. Lin, J. Bayer, Y. Dillies, W. Jiang, X. Liang,
R. Soletskyi, H. Wang, Y. Xie, B. Xiong, Z. Yang, J. Zhang,
L. Zhi, J. Li, and Z. Liu, “CombiBench: Benchmarking LLM
Capability for Combinatorial Mathematics,” 2025. [Online]. Available:
https://arxiv.org/abs/2505.03171

[10] H. Ying, Z. Wu, Y. Geng, J. Wang, D. Lin, and K. Chen, “Lean
Workbook: A large-scale Lean problem set formalized from natural
language math problems,” in Annual Conference on Neural Information
Processing Systems (NeurIPS), Vancouver, BC, Canada, December 2024.

[11] A. Q. Jiang, W. Li, J. M. Han, and Y. Wu, “LISA: Language models
of ISAbelle proofs,” in 6th Conference on Artificial Intelligence and
Theorem Proving (AITP), 2021.

[12] K. Yang and J. Deng, “Learning to Prove Theorems via Interacting with
Proof Assistants,” in Proceedings of the 36th International Conference
on Machine Learning, vol. 97. PMLR, 09–15 Jun 2019, pp. 6984–6994.

[13] L. Zhang, S. Lu, and N. Duan, “Selene: Pioneering Automated Proof in
Software Verification,” in ACL 2024, Bangkok, Thailand, August 11-16,
L. Ku, A. Martins, and V. Srikumar, Eds. Association for Computational
Linguistics, 2024, pp. 1776–1789.

[14] E. Lohn and S. Welleck, “miniCodeProps: a Minimal Benchmark
for Proving Code Properties,” 2024. [Online]. Available: https:
//arxiv.org/abs/2406.11915

[15] J. Hu, T. Zhu, and S. Welleck, “miniCTX: Neural Theorem Proving with
(Long-)Contexts,” in ICLR 2025, Singapore, April 24-28, 2025, 2025.

[16] A. Sanchez-Stern, Y. Alhessi, L. Saul, and S. Lerner, “Generating
correctness proofs with neural networks,” in Proceedings of the 4th
ACM SIGPLAN International Workshop on Machine Learning and
Programming Languages, ser. MAPL 2020. New York, NY, USA:
Association for Computing Machinery, 2020, p. 1–10.

[17] W. Li, L. Yu, Y. Wu, and L. C. Paulson, “IsarStep: a Benchmark
for High-level Mathematical Reasoning,” in ICLR 2021, Virtual Event,
Austria, May 3-7, 2021.

[18] X. Lin, Q. Cao, Y. Huang, H. Wang, J. Lu, Z. Liu, L. Song, and X. Liang,
“FVEL: interactive formal verification environment with large language
models via theorem proving,” in NeurIPS 2024, Vancouver, BC, Canada,
December 10 - 15, A. Globersons, L. Mackey, D. Belgrave, A. Fan,
U. Paquet, J. M. Tomczak, and C. Zhang, Eds., 2024.

[19] K. Yang, A. M. Swope, A. Gu, R. Chalamala, P. Song, S. Yu, S. Godil,
R. J. Prenger, and A. Anandkumar, “LeanDojo: Theorem Proving
with Retrieval-Augmented Language Models,” in Annual Conference on
Neural Information Processing Systems (NeurIPS), A. Oh, T. Naumann,
A. Globerson, K. Saenko, M. Hardt, and S. Levine, Eds., New Orleans,
LA, USA, December 2023.

[20] S. Chakraborty, G. Ebner, S. Bhat, S. Fakhoury, S. Fatima,
S. Lahiri, and N. Swamy, “Towards Neural Synthesis for SMT-
Assisted Proof-Oriented Programming,” 2024. [Online]. Available:
https://arxiv.org/abs/2405.01787

[21] Statistics of 46 NTP-related works in arXiv since 2024, Supplementary
Material. See the supplementary materials attached to this article.
[Online]. Available: https://zenodo.org/records/15552130

[22] L. C. Paulson, Isabelle - A Generic Theorem Prover (with a contribution
by T. Nipkow), ser. Lecture Notes in Computer Science. Springer, 1994,
vol. 828.

[23] J. C. Blanchette, S. Böhme, and L. C. Paulson, “Extending sledgeham-
mer with smt solvers,” Journal of Automated Reasoning, vol. 51, no. 1,
pp. 109–128, Jun 2013.

[24] A. Mohamed, T. Mascarenhas, H. Khan, H. Barbosa, A. Reynolds,
Y. Qian, C. Tinelli, and C. Barrett, “Lean-smt: An smt tactic for
discharging proof goals in lean,” May 2025. [Online]. Available:
https://arxiv.org/abs/2505.15796

[25] Y. Qian, J. Clune, C. Barrett, and J. Avigad, “Lean-auto: An Interface
between Lean 4 and Automated Theorem Provers,” May 2025. [Online].
Available: https://arxiv.org/abs/2505.14929

[26] A. Geesing, “Premise Selection for Lean 4,” Master’s thesis, Universiteit
van Amsterdam, June 2023.

[27] K. Palmskog, “qarith-stern-brocot,” https://
github.com/rocq-community/qarith-stern-brocot/blob/
9400dafdc7e35b53d23ab336e3a1b548c3b09133/theories/sqrt2.v, 2022,
[Online; accessed 07-May-2025].

[28] Lean community, “Logic and Proof,” https://leanprover-community.
github.io/logic_and_proof/introduction.html, 2025, [Online; accessed
07-May-2025].

[29] A. Q. Jiang, W. Li, S. Tworkowski, K. Czechowski, T. Odrzygózdz,
P. Milos, Y. Wu, and M. Jamnik, “Thor: Wielding Hammers to Integrate
Language Models and Automated Theorem Provers,” in NeurIPS 2022,
New Orleans, LA, USA, November 28 - December 9, 2022, 2022.

[30] Wikipedia, “Isabelle (proof assistant),” http://en.wikipedia.org/w/index.
php?title=Isabelle%20(proof%20assistant), 2025, [Online; accessed 07-
May-2025].

[31] A. Q. Jiang, S. Welleck, J. P. Zhou, T. Lacroix, J. Liu, W. Li, M. Jamnik,
G. Lample, and Y. Wu, “Draft, sketch, and prove: Guiding formal
theorem provers with informal proofs,” in The Eleventh International
Conference on Learning Representations, ICLR 2023, Kigali, Rwanda,
2023.

[32] M. Parmar, N. Patel, N. Varshney, M. Nakamura, M. Luo, S. Mashetty,
A. Mitra, and C. Baral, “LogicBench: Towards Systematic Evaluation of
Logical Reasoning Ability of Large Language Models,” in Proceedings
of the 62nd Annual Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), ACL 2024, Bangkok, Thailand, August
11-16, 2024, L. Ku, A. Martins, and V. Srikumar, Eds. Association for
Computational Linguistics, 2024, pp. 13 679–13 707.

[33] B. Jiang, Y. Xie, Z. Hao, X. Wang, T. Mallick, W. Su, C. J.
Taylor, and D. Roth, “A Peek into Token Bias: Large Language
Models Are Not Yet Genuine Reasoners,” in Proceedings of
the 2024 Conference on Empirical Methods in Natural Language
Processing, EMNLP 2024, Miami, FL, USA, November 12-16, 2024,
Y. Al-Onaizan, M. Bansal, and Y. Chen, Eds. Association for
Computational Linguistics, 2024, pp. 4722–4756. [Online]. Available:
https://aclanthology.org/2024.emnlp-main.272

[34] N. Patel, M. Kulkarni, M. Parmar, A. Budhiraja, M. Nakamura,
N. Varshney, and C. Baral, “Multi-LogiEval: Towards Evaluating
Multi-Step Logical Reasoning Ability of Large Language Models,”
in Proceedings of the 2024 Conference on Empirical Methods in

https://arxiv.org/abs/2504.21801
https://arxiv.org/abs/2504.11354
https://arxiv.org/abs/2309.04295
https://arxiv.org/abs/2302.12433
https://arxiv.org/abs/2302.12433
https://arxiv.org/abs/2505.03171
https://arxiv.org/abs/2406.11915
https://arxiv.org/abs/2406.11915
https://arxiv.org/abs/2405.01787
https://zenodo.org/records/15552130
https://arxiv.org/abs/2505.15796
https://arxiv.org/abs/2505.14929
https://github.com/rocq-community/qarith-stern-brocot/blob/9400dafdc7e35b53d23ab336e3a1b548c3b09133/theories/sqrt2.v
https://github.com/rocq-community/qarith-stern-brocot/blob/9400dafdc7e35b53d23ab336e3a1b548c3b09133/theories/sqrt2.v
https://github.com/rocq-community/qarith-stern-brocot/blob/9400dafdc7e35b53d23ab336e3a1b548c3b09133/theories/sqrt2.v
https://leanprover-community.github.io/logic_and_proof/introduction.html
https://leanprover-community.github.io/logic_and_proof/introduction.html
http://en.wikipedia.org/w/index.php?title=Isabelle%20(proof%20assistant)
http://en.wikipedia.org/w/index.php?title=Isabelle%20(proof%20assistant)
https://aclanthology.org/2024.emnlp-main.272

Natural Language Processing, EMNLP 2024, Miami, FL, USA,
November 12-16, 2024, Y. Al-Onaizan, M. Bansal, and Y. Chen, Eds.
Association for Computational Linguistics, 2024, pp. 20 856–20 879.
[Online]. Available: https://aclanthology.org/2024.emnlp-main.1160

[35] Isabelle contributors, “Hol libraries,” the src/HOL folder in
the redistribution pack of Isabelle 2024, https://isabelle.in.tum.de/
website-Isabelle2024, 2024, [Online; accessed 07-May-2025].

[36] AFP contributors, “Archive of Formal Proofs,” https://www.isa-afp.org/,
2025.

[37] Lean Prover Community, “mathlib4: The math library for Lean 4,”
https://github.com/leanprover-community/mathlib4, 2025, commit
05f6300492a69d93dcbc3e05d465c58ced9dc277 on 2025-05-27.

[38] K. Thompson, N. Saavedra, P. Carrott, K. Fisher, A. Sanchez-Stern,
Y. Brun, J. F. Ferreira, S. Lerner, and E. First, “Rango: Adaptive
Retrieval-Augmented Proving for Automated Software Verification,” in
47th International Conference on Software Engineering (ICSE), Ottowa,
ON, Canada, April 2025.

[39] H. Xin, Z. Z. Ren, J. Song, Z. Shao, W. Zhao, H. Wang, B. Liu, L. Zhang,
X. Lu, Q. Du, W. Gao, H. Zhang, Q. Zhu, D. Yang, Z. Gou, Z. F.
Wu, F. Luo, and C. Ruan, “DeepSeek-Prover-V1.5: Harnessing Proof
Assistant Feedback for Reinforcement Learning and Monte-Carlo Tree
Search,” in ICLR 2025, Singapore, April 24-28, 2025.

[40] H. Xin, D. Guo, Z. Shao, Z. Ren, Q. Zhu, B. Liu, C. Ruan,
W. Li, and X. Liang, “Deepseek-prover: Advancing theorem proving
in llms through large-scale synthetic data,” 2024. [Online]. Available:
https://arxiv.org/abs/2405.14333

[41] X. Zhao, L. Zheng, H. Bo, C. Hu, U. Thakker, and L. Kong,
“SubgoalXL: Subgoal-based Expert Learning for Theorem Proving,”
2024. [Online]. Available: https://arxiv.org/abs/2408.11172

[42] J. Meng and L. C. Paulson, “Translating higher-order clauses to first-
order clauses,” Journal of Automated Reasoning, vol. 40, no. 1, pp.
35–60, Jan 2008.

[43] D. Kühlwein, J. C. Blanchette, C. Kaliszyk, and J. Urban, “MaSh:
Machine Learning for Sledgehammer,” in Interactive Theorem Proving,
S. Blazy, C. Paulin-Mohring, and D. Pichardie, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2013, pp. 35–50.

[44] H. Wang, H. Xin, C. Zheng, Z. Liu, Q. Cao, Y. Huang, J. Xiong, H. Shi,
E. Xie, J. Yin, Z. Li, and X. Liang, “LEGO-Prover: Neural Theorem
Proving with Growing Libraries,” in 12th International Conference on
Learning Representations, (ICLR), Vienna, Austria, May 2024.

[45] Z. Azerbayev, H. Schoelkopf, K. Paster, M. D. Santos, S. M. McAleer,
A. Q. Jiang, J. Deng, S. Biderman, and S. Welleck, “Llemma: An open
language model for mathematics,” in 12th International Conference on
Learning Representations (ICLR), Vienna, Austria, May 2024.

[46] Y. Zheng, R. Zhang, J. Zhang, Y. Ye, and Z. Luo, “LlamaFactory:
Unified efficient fine-tuning of 100+ language models,” in Proceedings
of the 62nd Annual Meeting of the Association for Computational
Linguistics (Volume 3: System Demonstrations), Y. Cao, Y. Feng, and
D. Xiong, Eds. Bangkok, Thailand: Association for Computational
Linguistics, Aug. 2024, pp. 400–410. [Online]. Available: https:
//aclanthology.org/2024.acl-demos.38/

[47] C. Kaliszyk and J. Urban, “MizAR 40 for Mizar 40,” Journal of
Automated Reasoning, vol. 55, no. 3, pp. 245–256, Oct 2015.

[48] G. Irving, C. Szegedy, A. A. Alemi, N. Een, F. Chollet, and J. Urban,
“DeepMath - Deep Sequence Models for Premise Selection,” in Ad-
vances in Neural Information Processing Systems, D. Lee, M. Sugiyama,
U. Luxburg, I. Guyon, and R. Garnett, Eds., vol. 29, 2016.

[49] M. Färber, C. Kaliszyk, and J. Urban, “Monte Carlo Tableau Proof
Search,” in Automated Deduction – CADE 26, L. de Moura, Ed. Cham:
Springer International Publishing, 2017, pp. 563–579.

[50] C. Kaliszyk, F. Chollet, and C. Szegedy, “HolStep: A Machine Learning
Dataset for Higher-order Logic Theorem Proving,” in ICLR 2017,
Toulon, France, April 24-26, 2017, 2017.

[51] J. Urban and J. Jakubův, “First neural conjecturing datasets and ex-
periments,” in Intelligent Computer Mathematics, C. Benzmüller and
B. Miller, Eds. Cham: Springer International Publishing, 2020, pp.
315–323.

[52] S. Polu and I. Sutskever, “Generative language modeling for automated
theorem proving,” 2020. [Online]. Available: https://arxiv.org/abs/2009.
03393

[53] Z. A. Goertzel, J. Jakubův, C. Kaliszyk, M. Olšák, J. Piepenbrock, and
J. Urban, “The Isabelle ENIGMA,” in 13th International Conference
on Interactive Theorem Proving (ITP 2022), ser. Leibniz International
Proceedings in Informatics (LIPIcs), J. Andronick and L. de Moura,

Eds., vol. 237. Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2022, pp. 16:1–16:21.

[54] B. Rao, W. Eiers, and C. Lipizzi, “Neural Theorem Proving: Generating
and Structuring Proofs for Formal Verification,” 2025. [Online].
Available: https://arxiv.org/abs/2504.17017

[55] S. Mirzadeh, K. Alizadeh, H. Shahrokhi, O. Tuzel, S. Bengio, and
M. Farajtabar, “GSM-Symbolic: Understanding the Limitations of Math-
ematical Reasoning in Large Language Models,” in ICLR 2025, Singa-
pore, April 24-28, 2025.

[56] K. Huang, J. Guo, Z. Li, X. Ji, J. Ge, W. Li, Y. Guo, T. Cai,
H. Yuan, R. Wang, Y. Wu, M. Yin, S. Tang, Y. Huang, C. Jin,
X. Chen, C. Zhang, and M. Wang, “Math-perturb: Benchmarking llms’
math reasoning abilities against hard perturbations,” 2025. [Online].
Available: https://arxiv.org/abs/2502.06453

[57] E. S. Salido, J. Gonzalo, and G. Marco, “None of the others:
a general technique to distinguish reasoning from memorization in
multiple-choice llm evaluation benchmarks,” 2025. [Online]. Available:
https://arxiv.org/abs/2502.12896

[58] C. Xie, Y. Huang, C. Zhang, D. Yu, X. Chen, B. Y. Lin, B. Li, B. Ghazi,
and R. Kumar, “On memorization of large language models in logical
reasoning,” 2025. [Online]. Available: https://arxiv.org/abs/2410.23123

[59] T. Gauthier, C. Kaliszyk, J. Urban, R. Kumar, and M. Norrish, “Tactic-
toe: Learning to prove with tactics,” Journal of Automated Reasoning,
vol. 65, no. 2, pp. 257–286, Feb 2021.

[60] S. Welleck and R. Saha, “Llmstep: Llm proofstep suggestions in lean,”
2023. [Online]. Available: https://arxiv.org/abs/2310.18457

[61] A. Sanchez-Stern, E. First, T. Zhou, Z. Kaufman, Y. Brun, and T. Ringer,
“Passport: Improving Automated Formal Verification Using Identifiers,”
ACM Trans. Program. Lang. Syst., vol. 45, no. 2, Jun. 2023.

[62] A. Paliwal, S. Loos, M. Rabe, K. Bansal, and C. Szegedy, “Graph Repre-
sentations for Higher-Order Logic and Theorem Proving,” Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 34, no. 03, pp.
2967–2974, Apr. 2020.

[63] A. Bauer, M. Petkovic, and L. Todorovski, “MLFMF: Data Sets for
Machine Learning for Mathematical Formalization,” in Advances in Neu-
ral Information Processing Systems 36: Annual Conference on Neural
Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA,
USA, December 10 - 16, 2023, A. Oh, T. Naumann, A. Globerson,
K. Saenko, M. Hardt, and S. Levine, Eds., 2023.

[64] K. Bansal, S. Loos, M. Rabe, C. Szegedy, and S. Wilcox,
“HOList: An Environment for Machine Learning of Higher Order
Logic Theorem Proving,” in Proceedings of the 36th International
Conference on Machine Learning, ser. Proceedings of Machine
Learning Research, K. Chaudhuri and R. Salakhutdinov, Eds.,
vol. 97. PMLR, 09–15 Jun 2019, pp. 454–463. [Online]. Available:
https://proceedings.mlr.press/v97/bansal19a.html

[65] M. Mikula, S. Tworkowski, S. Antoniak, B. Piotrowski, A. Q. Jiang, J. P.
Zhou, C. Szegedy, L. Kucinski, P. Milos, and Y. Wu, “Magnushammer:
A Transformer-Based Approach to Premise Selection,” in The Twelfth
International Conference on Learning Representations, ICLR 2024,
Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024.

[66] H. Lin, Z. Sun, S. Welleck, and Y. Yang, “Lean-star: Learning to
interleave thinking and proving,” in ICLR 2025, Singapore, April 24-
28, 2025.

https://aclanthology.org/2024.emnlp-main.1160
https://isabelle.in.tum.de/website-Isabelle2024
https://isabelle.in.tum.de/website-Isabelle2024
https://www.isa-afp.org/
https://github.com/leanprover-community/mathlib4
https://arxiv.org/abs/2405.14333
https://arxiv.org/abs/2408.11172
https://aclanthology.org/2024.acl-demos.38/
https://aclanthology.org/2024.acl-demos.38/
https://arxiv.org/abs/2009.03393
https://arxiv.org/abs/2009.03393
https://arxiv.org/abs/2504.17017
https://arxiv.org/abs/2502.06453
https://arxiv.org/abs/2502.12896
https://arxiv.org/abs/2410.23123
https://arxiv.org/abs/2310.18457
https://proceedings.mlr.press/v97/bansal19a.html

	Introduction
	Issues in Isar
	Mathematician-Friendly but Machine-Unfriendly
	Legacy burdens on Isabelle's proof languages

	MiniLang: A Minimal Proof Language
	Syntax
	The Proof Model and Semantics
	Other Commands and Mechanism
	Soundness
	Sledgehammer* : An Improved Sledgehammer

	Translation from Isar to MiniLang
	The Translation Process
	Analysis of the Translation Result

	Evaluation
	NTP & Evaluation Setup
	Base Models
	Datasets
	Data Contamination
	Prompt Setup
	Supervised Fine-Tuning (SFT)
	Proof Check

	Result
	RQ1. Effectiveness of Redesigning Proof Language
	RQ2. Sources of Performance Improvement
	RQ3: Training Corpora for a New Proof Language

	Related Works
	NTP for Math Competitions vs. Real-world Engineering
	Analysis to LLMs' challenges in learning proof languages
	Proof Languages & Representations for Machine Learning
	Language Models for Real-World Proof Generation

	Discussion
	Potentials in Extending MiniLang to Other Proof Assistants

	Limitations and Future Work
	References

