2507.18885v4 [cs.PL] 23 Dec 2025

arxXiv

A Minimalist Proof Language for Neural Theorem Proving
over Isabelle/HOL

QIYUAN XU, Nangyang Technological University, Singapore

RENXI WANG, Mohamed bin Zayed University of Artificial Intelligence, United Arab Emirates
PEIXIN WANG, East China Normal University, China

HAONAN LI, Mohamed bin Zayed University of Artificial Intelligence, United Arab Emirates
CONRAD WATT, Nangyang Technological University, Singapore

Neural Theorem Proving (NTP) employs Large Language Models (LLMs) to automate formal proofs in proof
assistants. While LLMs have achieved relatively remarkable success in informal reasoning tasks using natural
languages, the transition to mechanized formal theorem proving presents persistent challenges. Mechanized
proof languages often contain many syntactic constructs and diverse, specialized proof tactics, which facilitate
expert use but have no direct counterpart in informal mathematical proofs. These prover-specific idioms
represent an additional burden for LLM-based NTPs that might be otherwise successful in generating informal
proofs. Seeking to bridge this gap between formal proof construction and informal reasoning, in order to better
facilitate NTP, this work approaches these challenges from a language design perspective. We look at common
reasoning patterns in informal proofs and in existing mechanized proofs, and design Minilang (formally named
Isabelle/Minilang), a minimalist proof language that captures these reasoning patterns. In contrast to proof
languages (informal and formal) that often feature a large collection of operations with unclear semantic
boundaries, Minilang is deliberately kept minimalist — its core design comprises only 10 proof operations, each
with clear semantic distinctions. We further develop a rule-based translator from Isabelle’s proof language
(Isar) to Minilang, translating ~340K existing Isabelle proofs with an ~85% success rate. Using this translated
corpus, we finetune two LLMs to compare machine learning performance on Minilang versus the original Isar
language. Experiments show Minilang benefits the two LLMs by improving the pass@1 success rate on the
PISA benchmark by up to 20/29 percentage points in comparison to the Isar-based LLMs w/wo Sledgehammer.
The pass@1 rate reaches 69.1%, exceeding the prior work Baldur’s pass@64 (65.7%); the pass@8 rate reaches
79.2%, exceeding the state-of-the-art on PISA (71.0%) achieved by Magnushammer.

ACM Reference Format:

Qiyuan Xu, Renxi Wang, Peixin Wang, Haonan Li, and Conrad Watt. 2018. A Minimalist Proof Language
for Neural Theorem Proving over Isabelle/HOL. In Proceedings of Make sure to enter the correct conference
title from your rights confirmation email (Conference acronym 'XX). ACM, New York, NY, USA, 27 pages.
https://doi.org/XXXX XXX XXXXXXX

Authors’ Contact Information: Qiyuan Xu, xu@qiyuan.me, Nangyang Technological University, Singapore; Renxi Wang,
renxi.wang@mbzuai.ac.ae, Mohamed bin Zayed University of Artificial Intelligence, Abu Dhabi, United Arab Emirates;
Peixin Wang, pxwang@sei.ecnu.edu.cn, East China Normal University, Shanghai, China; Haonan Li, haonan li@mbzuai.ac.ae,
Mohamed bin Zayed University of Artificial Intelligence, Abu Dhabi, United Arab Emirates; Conrad Watt, conrad.watt@ntu.
edu.sg, Nangyang Technological University, Singapore.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

Conference acronym 'XX, Woodstock, NY

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-XXXX-X/2018/06

https://doi.org/XXXXXXX XXXXXXX

, Vol. 1, No. 1, Article . Publication date: December 2018.

https://orcid.org/0000-0002-9196-3237
https://orcid.org/
https://orcid.org/
https://orcid.org/0000-0001-6623-5089
https://orcid.org/0000-0002-0596-877X
https://doi.org/XXXXXXX.XXXXXXX
https://orcid.org/0000-0002-9196-3237
https://orcid.org/
https://orcid.org/
https://orcid.org/0000-0001-6623-5089
https://orcid.org/0000-0002-0596-877X
https://doi.org/XXXXXXX.XXXXXXX
https://arxiv.org/abs/2507.18885v4

2 Qiyuan et al.

1 Introduction

Formal verification of software systems fundamentally relies on theorem proving to certify safety-
critical properties. While interactive theorem proving (ITP) requires substantial manual effort
and automated theorem proving (ATP) excels only within restricted domains, the rise of Large
Language Models (LLMs) has introduced a promising alternative: Neural Theorem Proving (NTP).
By using LLMs to interface with interactive theorem provers, NTP enables automated proof
construction for complex properties [1]. Recent NTP systems have demonstrated remarkable
success in mathematical competitions [2-4], achieving gold medal performance at the International
Mathematical Olympiad [5], indicating promising reasoning and theorem-proving capabilities.

A fundamental challenge in NTP is the gap between natural-language-based informal reasoning
and formal-language-based theorem proving. Prior works focus on training language models to
master the existing languages of proof assistants [4, 6—8]. In this work, we take a complementary
approach by exploring the potential of proof language design focused specifically on facilitating
NTP. Our key hypothesis is that the performance of language model-based neural theorem proving
can be improved by reducing the prover-specific idioms and the complexity of the proof language.

We therefore propose Isabelle/Minilang, a minimalist proof language that restricts its constructs to
only those operations with natural counterparts in informal mathematical reasoning. An example
is illustrated in Fig. 1. For the proof obligations raised from those operations, Minilang delegates
them to ATPs and instead focuses on high-level proof structures, as language models excel at proof
outlining rather than fine-grained deduction. Its semantics is formalized using a simple tree-based
state machine, which not only provides the foundation for establishing its soundness but also
demonstrates the language’s conceptual simplicity at the semantic level, maintaining consistency
with its minimalist design philosophy.

We also present Sledgehammer”, the ATP used by Minilang, which is an improved version
of Sledgehammer. Our improvements lie in two aspects. First, Sledgehammer™ incorporates a
preprocessing step that simplifies and decomposes proof goals into subgoals more amenable to
automated proving. Second, we train our proof generation models to produce relevant lemma hints
to guide Sledgehammer*’s premise selection, allowing the models’ global proof strategy to directly
complement the hammer’s local focus on individual subgoals.

Beyond this language design, we further contribute a rule-based translator to convert existing
Isabelle corpora into Minilang for model training. This is challenging due to Isabelle’s complex
syntax and numerous corner cases. We propose three strategies to overcome this complexity: (i)
Elaboration: Make implicit information explicit by exposing hidden details in a clear, structured
manner; (ii) Normalization: Consolidate diverse approaches for achieving the same logical purpose
into uniform representations; (iii) Elimination of tactics: Replace tactics with Sledgehammer™, except
those that correspond well to informal proofs. Applying this translator at scale, we translate 85.25%
of ~340K existing Isar proofs into Minilang. This translation distills Isar’s versatile syntax and
idiomatic reasoning into unified minimalist proof structures, eliminating unnecessary variations
and theorem-proving idioms for more efficient LLM learning.

To quantify the gains from this representation distillation, we fine-tune two pretrained LLMs
— Llemma [9] and Deepseek Prover Base v1.5 [10] — on both the translated Minilang corpus and
the original Isar corpus for comparison. The results show that Minilang models achieve about a 29
percentage point improvement over Isar models.

Since Minilang incorporates ATP to discharge proof obligations while Isar does not, we conduct
an ablation study to isolate the impact of language redesign from the ATP enhancement. As our
baseline, we adopt the currently strongest known method, Thor’s approach [11]. It augments Isar
scripts by replacing tactics with Sledgehammer calls wherever applicable. Even against this stronger

, Vol. 1, No. 1, Article . Publication date: December 2018.

A Minimalist Proof Language for Neural Theorem Proving over Isabelle/HOL 3

baseline, Minilang maintains a 20 percentage point advantage, demonstrating the effectiveness of
its minimalist language design.

To measure the improvement provided by Sledgehammer* and our integration of relevant lemma
hints, we conduct an ablation study that compares Sledgehammer* against the original Sledge-
hammer on both Minilang and Isar. The result shows at least 6 percentage points of improvement
across all our metrics.

Contributions. To conclude this introduction, we summarize our contributions:

e We present Minilang, a minimalist proof language over Isabelle, designed to restrict language
constructs to operations that align with informal proofs, to better support language model-
based neural theorem proving.

e We develop a rule-based translator from Isar to Minilang that successfully converts 85.28% of
340K existing Isar proofs.

e We present two fine-tuned whole-proof generation models over Minilang, respectively based
on Llemma and Deepseek-Prover Base v1.5.

e We present Sledgehammer®, an improved Sledgehammer that additionally takes relevant
remise hints as input. We further provide two fine-tuned language models for generating
these hints, constituting two automatic hammers.

e We develop an open-source socket-based Isabelle Read-Eval-Print-Loop infrastructure that
scales to large compute clusters. We have deployed it on a cluster of 24 nodes x 128 CPUs.

Outline. The remainder of this paper is organized as follows. We begin by presenting our motivation
in §2. In §3, we introduce Minilang, a minimalist proof language, along with Sledgehammer™, the
enhanced ATP system it employs. We then propose an automated translation from Isar to Minilang
in §4, which provides a substantial proof corpus for NTP training. Our experimental results are
presented in § 5, followed by a discussion of related work in § 6. Finally, we conclude with the
limitations and future work in §7.

2 Motivation

Early NTP works adopt LLM-guided proof search, where language models recommend the next
tactic based on the current proof goal to heuristically guide the search process [15]. As LLMs
continue to advance in reasoning capabilities, recent works have shifted toward declarative theorem
proving [3, 4, 8, 16]. In this paradigm, language models construct proofs in a manner closer to
informal pen-and-paper proofs — by declaring a series of subgoals to plan and propose proof
strategies from a high-level perspective — thereby enabling models to more effectively leverage
proof techniques learned from informal reasoning tasks.

In some purely declarative NTP works [11, 16], language models are used solely to draft high-
level proof outlines, delegating all proof obligations to ATPs. The rationale is that language models
are better suited for planning high-level proof strategies rather than fine-grained reasoning, while
proof obligations of subgoals are better handled by ATPs with their deterministic search algorithms.

Ideally, the training and generation of declarative NTP models should be based on a simple formal
language that can succinctly express proof outlines while maintaining alignment with informal
pen-and-paper proofs. However, such an ideal language does not yet exist, despite the presence of
all required declarative constructs in existing proof languages.

The problems are at least threefold: an overabundance of expert features!, extensive syntactic
redundancy, and substantial requirements for proof automation in declarative proving.

These expert features include specialized mechanisms and tactics for fine-grained control over
the reasoning process. Such mechanisms include Isabelle’s meta-logic encoding (e.g., generalized

IDetailed descriptions and configuration options that provide fine-grained control over the strategy of reasoning tools.

, Vol. 1, No. 1, Article . Publication date: December 2018.

Theorem sqrt2_not_rational:
Vpq : nat, q <> 0 — pxp = 2x(q*q) — L.
intros p q; generalize p; clear p;
elim q using (well_founded_ind 1t_wf).
clear g; intros q Hrec p Hneq;
pose proof Hneq as H1t_O_q;
apply Nat.neq_0_1t_@ in H1t_O_qg;
intros Heq.
apply (Hrec (3 x q - 2 x p)
(comparison4 _ _ H1t_O_q Heq)
B*p-4x*xa).
apply sym_not_equal; apply lt_neq;
apply Nat.add_lt_mono_1 with (2 * p);
rewrite « plus_n_0; rewrite Nat.add_comm;
rewrite Nat.sub_add; auto with =*.
apply new_equality; auto.
Qed.

(a) Rocq, from [12]

theorem sqrt2_not_rational: "sqrt 2 ¢ Q"
proof
let ?x = "sqrt 2"
assume "?x € Q"
then obtain m n :: nat where
"|?x] =m / n" and "coprime m n"
by (rule Rats_abs_nat_div_natE)
hence "m*2 = ?x*2 x n*2"
by (auto simp add: power2_eq_square)
hence eq: "m*2 = 2 * n*2"
using of_nat_eq_iff power2_eqg_square by force
hence "2 dvd m*2" by simp
hence "2 dvd m" by simp
have "2 dvd n" proof -
from "2 dvd m" obtain k where "m = 2 * k" ..
with eq have "2 * n*2 = 22 * k*2" by simp
hence "2 dvd n*2" by simp
thus "2 dvd n" by simp
qed
with "2 dvd m" have "2 dvd gcd m n"
by (rule gcd_greatest)
with lowest_terms have "2 dvd 1" by simp
thus False using odd_one by blast
ged

(c) Isabelle/lsar, from [14]

Qiyuan et al.

theorem sqrt_two_irrational {a b : N}

(co: gcdab=1): a2 # 2 *b*2 :=
by rintro h : a*2 = 2 x b*2
have : 2 | a*2 := by simp [h]
have : 2 | a := dvd_of_dvd_pow prime_two this

apply Exists.elim this rintro c aeq

2 x (2 xc*2) =2 % b*"2 := by
simp [Eq.symm h, aeq]

simp [pow_succ' _, mul_comm, ...]

2 x c*2 = b*2 := by

apply mul_left_cancely, _ this decide

have :

have :

have : 2 | b*2 := by simp [Eq.symm this]
have : 2 | b := by

exact dvd_of_dvd_pow prime_two this
have : 2 | gcd a b := by

apply dvd_gcd . assumption . assumption
have _ : 2 | (1 : N) := by simp [co] at *
contradiction

(b) Lean, from [13].

theorem sqrt2_not_rational: "v2 ¢ Q"
RULE proof_by_contradiction
CONSIDER "dmn. |V§| = m/n A coprime m n" END
HAVE "m*2 = (V/2)*2 * n*2" END

HAVE eq: "m*2 = 2 * n"2" END
HAVE "2 dvd m*2" END WITH eq
HAVE "2 dvd m" END

HAVE "2 dvd n"

CONSIDER k where "m = 2 * k" END
HAVE "2 x n*2 = 272 % k*2" END WITH eq
HAVE "2 dvd n*2" END
END
HAVE "2 dvd gcd m n" END
HAVE "2 dvd 1" END
END

(d) Minilang

Fig. 1. Minilang and mainstream proof languages on the same proof goal. While Lean and Isar incorporate
natural-language-like structures, (e.g., build-in keywords such ashave and hence), their proofs are interspersed
with tactics and other expert-oriented constructs that complicate learning. In contrast, Minilang aims to
highlight the key proof outlines with close alignment to informal proofs.

, Vol. 1, No. 1, Article . Publication date: December 2018.

A Minimalist Proof Language for Neural Theorem Proving over Isabelle/HOL 5

elimination), Rocq’s Ltac tactic programming language, and Lean’s conv mode for targeted rewrit-
ing. Such tactics include Isabelle’s blast lim: n for tableaux reasoning with specific search depth,
Rocq’s rewrite ... at ... for specifying rewrite locations, and Lean’s aesop with customizable rule
sets. These features involve numerous configurations and technical details that impose substantial
learning burdens on language models, particularly in NTP scenarios where training data is scarce.

Syntactic redundancy is particularly pronounced in Isabelle, the proof assistant underlying
our work. Isabelle’s proof language Isar admits multiple, often interchangeable proof idioms —
such as fact chaining via connectives versus labels, and structured proofs versus apply-style
scripts — yielding numerous ways to formalize identical proof procedures. The syntactic re-
dundancy addressed in this work includes at least: 4 mechanisms for opening proof contexts
(subgoal, proof, {3}, goal_cases), 5 ways to apply tactics (apply, by, proof, ged, tactic com-
binators), 11 constructs for passing facts (using, use-in, from, with, then, thus, hence, also,
moreover, ultimately, finally), 6 syntactic sugar for referring to facts and terms (this, that,
assms, prems, ?thesis, ?case), and many semantically similar operations with subtle differences
(unfoldingvs.unfold_tacvs. subst, cases vs. case_tac, inductionvs. induct vs. induct_tac).

While redundant syntax may be harmless to humans, it becomes problematic for NTP given
corpus scarcity: it either dilutes limited training data or forces models to consume substantial data
to learn that different forms are semantically equivalent.

Finally, if NTP models are to focus on proposing high-level proof outlines, the underlying proof
assistant must provide powerful ATPs to discharge the proof obligations of the subgoals raised in
the proof outlines. The capabilities of ATPs and NTP models are complementary: when ATP support
is insufficient, NTP models must generate more fine-grained subgoals to make them amenable to
automated proving. In the worst case, some declarative NTP systems must handle proof obligation
discharge themselves, even resorting to using additional NTP models in place of ATPs.

These three challenges motivate us to propose Minilang, a minimalist proof language, and
Sledgehammer®, an enhanced version of the well-known ATP, Sledgehammer. By minimalist,
we mean Minilang’s design aims to minimize its language constructs, retaining only declarative
structures and operations that align well with informal proofs.

3 Minilang: A Minimalist Proof Language Mirroring Informal Proofs

Minilang’s constructs, as listed in Table 1, consist of (1) declarative constructs for decomposing hard
proof goals into simpler subgoals, (2) operations commonly found in informal proofs, and (3) one
necessary technical command. These constructs, though minimalist, are sufficient for drafting high-
level proof outlines, fulfilling the goals of the purely declarative paradigm. Minilang’s high-level
design does not incorporate a tactic system, instead delegating all proof obligations to ATPs.

As a pragmatic decision to maximize the success of our Isar translation procedure, we additionally
extend Minilang with a small number of escape hatches back to Isar, which are generated infre-
quently in the training corpus but allow us to avoid individual local translation failures invalidating
multiple dependent definitions (§4.2.3).

This section is organized as follows: §3.1 presents Minilang’s syntax; §3.2 builds the proof model
on which the semantics is formalized; §3.3 elaborates on the semantics; §3.4 details Sledgehammer,
the ATP used in MiniLang; §3.5 discusses MiniLang’s soundness and relative completeness.

3.1 Syntax

A Minilang proof script comprises a sequence of commands whose syntax is defined as follows.
The question mark (?) means that the clause can be omitted if the facts is empty.

Proof Script = Command*

, Vol. 1, No. 1, Article . Publication date: December 2018.

6 Qiyuan et al.

Table 1. Core constructs of Minilang

Operation Description

Declarative constructs

HAVE decomposing a proof goal into step-by-step subgoals.

CONSIDERy analyzing a proof goal by cases, e.g., consider the cases where x is positive,
zero, or negative.

CONSIDER5 binding variables to the witnesses of existential statements, e.g., consider a
number p such that p is a prime greater than 2025.

Proof operations commonly found in informal proofs

RULE proving a goal by a specific mode of argument, e.g., arguing by contradiction
for a given goal, and deriving A — B and B — A to show A «— B.

CHOOSE proving an existential statement by providing a witness.

SIMPLIFY equivalently rewriting the proof goal into a simpler form.

CASE_SPLIT applying structural case analysis to the goal.

INDUCT applying induction to the goal.

END WITH ps indicates that the target proof goal straightforwardly follows from the given
premises ps.

NEXT concludes the current goal’s proof and moves to the next sibling goal when
sibling goals exist. In terms of formalized semantics, it is an alias of END.

Necessary technical command

INTRO for management of variable and hypothesis context

Command := HAVE props | CONSIDER props | INTRO
| RULE fact | CHOOSE term | SIMPLIFY facts’
| INDUCT the same argument syntax as Isabelle’s induct tactic
| CASE_SPLIT the same argument syntax as Isabelle’s cases tactic
| END (WITH facts)’ (WITHOUT facts)’
| NEXT (WITH facts)’ (WITHOUT facts)’

3.2 Proof Model: State Machine over Trees

The semantics of Minilang commands are defined as transitions over a state machine (see Fig. 2).
An example is illustrated in Fig. 4. Specifically, a state is either the special proof completion state or
a labelled tree that hierarchically organizes subgoals into contexts,

State := Tree Tree := Leaf | (label: Context, children: Tree")
Context := (a set of variables, a set of named hypotheses)
Leaf := Context - Goal Goal = Term

where leaves represent unproven subgoals, and internal nodes group sibling subgoals that inherit a
common context from decomposing a larger goal (e.g., lines 3, 9, 10).

For example, the resulting tree after executing the line 10 of Fig. 3 (CONSIDER k. m = 2 x k)
is given in the dashed box of Fig. 4. This tree contains three subgoals arranged left to right. The
leftmost subgoal (opened by line 10) requires proving the existence of k. The middle subgoal, opened
by HAVE E at line 9, is from the parent of the first subgoal. Its context has variable k fixed with
condition m = 2k, allowing the proof for the middle subgoal to use this condition once the first
subgoal establishes k’s existence. The rightmost subgoal (False) is the top goal of the entire proof. It
can similarly utilize the conclusion (2 dvd m) from the middle subgoal. Each leaf subgoal’s context

, Vol. 1, No. 1, Article . Publication date: December 2018.

A Minimalist Proof Language for Neural Theorem Proving over Isabelle/HOL 7

(2.2)FV2¢Q
\L line 2
(2,{V2 € Q}) r False

J/ line 3

Initial State: (@, @) + Goal

) . (2,{V2€Q})
t th le leaf
a tree with a single lea s ~
v (@,2) - 3mn. A ({m,n}, {A)}) F False
Command where A = V2| = 2 A coprime(m, n)
J/ line 4
oD ({m.n), (V2 € Q.A)) + Fal
if the state is a leaf that is s s ’ alse
provable by Sledgehammer* J, line 5
({m,n},{V2 € Q, A, B}) r False
Proof J/ line 6-8
completes
({m,n}, {V2 € Q, A, B,eq,C,D}) r False
. o , . where B, eq, C, D are the propositions at line 5,6,7,8.
Fig. 2. Minilang’s state machine. \L
line 9

({m,n},{V2 € Q, A B,eq,C,D})

~ N
(2,2)r2dvdn (@,{2 dvd n}) + False

({m.n}, {V2 € Q A B,eq,C,D})

1 theorem sqrt2_not_rational: "v2¢ Q"
2 RULE proof_by_contradiction

| |

l 1

| |

3 CONSIDER "3Jmn. |V2| = ™ A coprime mn” | . . |
4 END : (2,2) (2,{2 dvd n}) + False ,
| |

| |

| |

| |

| |

-, ~

- ~
- ~
- ~

5 HAVE B: "m? = (¥2)?-n®" END
6 HAVE eq: "m?=2-n’" END (2,2) + k. m =2k (k,m=2k)r2dvdn

7 HAVE C: "2dvd m?" END WITH eq Moo oo
8 HAVE D: "2 dvd m" END line 11

9 HAVE E: "2dvd n"
10 CONSIDER "3k. m = 2k" ({m.n},{V2e Q AB, eq.C.D})

11 END — ™~

12 HAVE "2+ n? = 22 . k2" END WITH eq ({k},{m=2k})+2dvdn (@,{2 dvd n}) + False
13 HAVE "2 dvd n?" END J/ line 12-16

14 END

15 HAVE I: "2 dvd (gcdmn)" END ({m,n},{V2 € Q, A,B,eq,C,D,E,1,]}) + False

—_

6 HAVE J: "2 dvd 1" END line 17
17 END
Proof completes

Fig. 3. A le wri in Minilang.
ig. 3. An example written in Minilang Fig. 4. The transition of the tree state in the example of

Fig. 3. Each node represents the state after the execution
of the labeled line.

, Vol. 1, No. 1, Article . Publication date: December 2018.

8 Qiyuan et al.

includes all labeled contexts from its ancestors in the tree, so all subgoals can access the previously
established lemmas A, B, C, D.

Given the top-level proof goal G, the initial state is the tree with a single root node ((@, @) + G)
that represents the top goal G itself. In the sqrt2_not_rational example, this initial state is,

((Q: 2)FV2 e Q) (Initial State)

Given a proof script as a sequence of commands, Minilang’s proof system verifies this proof script
by executing each of its commands successively to transition the state machine. This execution
yields three results:

(1) The execution gets stuck at one of the commands because no corresponding transition rule
can be found, indicating proof failure.

(2) All commands are successfully executed through to the last one, and the machine reaches a
special terminal state (the square node in Fig. 2) that represents proof completion.

(3) All commands are successfully executed through to the last one, but the machine does not
reach the proof-complete state, indicating that the proof script is incomplete and the proof
remains unfinished.

3.3 Semantics

The semantics of Minilang commands are formalized as transition schemas presented in Fig. 5. Each
transition rewrites only the leftmost leaf or the leftmost non-leaf node of the state tree; consequently,

it suffices to describe the change at that leftmost position. We use a schematic diagram X/R ~gto

represent an arbitrary tree whose leftmost leaf is X. The schematic variable R represents X’s parent
node and all its upward context, while the schematic variable S represents potentially multiple

sibling subtrees of X. As a special case, a schematic diagram X/R\ s can be instantiated to a

tree with a single root node X, where R and S are considered instantiated to empty.

Since all transitions act on the leftmost subgoal, we refer to that leftmost goal as the current goal
in what follows. We now describe each command’s semantics.

HAVE Gy, - - - , G, is the key to decomposing a proof goal G, into subgoals Gy, - - - , G,. It decom-
poses the proof problem about the goal Gy into: 1) proving the subgoals Gy, - - - , G, successively;
and then 2) using their proved conclusions as lemmas to prove the original goal Gy.

CONSIDER combines two functions: (a) case-analysis (e.g., consider the cases where x is positive,
zero, or negative) and (b) existential-witness extraction (e.g., let p be a prime greater than 2025).
This design is logically reasonable because both of the functions perform elimination of disjunctive
connectives (3 and V). However, for clarity, we elaborate on these two functions separately.

Hlustrated in Fig. 6a, CONSIDER P; | -- - | P, splits the proof of the current goal G into n cases.
This operation produces n + 1 subgoals, where the first goal P; V - - - V P, verifies that the case split
is exhaustive, namely, Py, - - - , P, are all the possible situations and no other case is missing from
consideration. Once the exhaustiveness is proven, the proof proceeds with n separate branches,
each proving the goal under the assumption of case P;.

lusrated in Fig. 6b, CONSIDER 3x. P(x) introduce a sequence of fresh variables x and bind
them to certain terms satisfying the condition P(X), once the existence of such terms is shown.
Regarding the notation, X represents a sequence of variables. This command generates 2 subgoals:
The first subgoal asserts the existence of such terms satisfying P; the second subgoal augments the
original goal G by binding x to the terms satisfying P.

HAVE and CONSIDER introduce lemmas within the current goal’s context. However, we have
not yet provided a command for introducing variables and hypotheses into the context. Without it,

, Vol. 1, No. 1, Article . Publication date: December 2018.

A Minimalist Proof Language for Neural Theorem Proving over Isabelle/HOL 9

R
R HAVE Gy, ,Gp /N
/N > (e,1) S
©n+c S _—
(2, 2) Gy - (2,2) -G, (2,{G1,---,Gu}) F Gy
R CONSIDER 3%,. P, | - - | 3%,. P, R
> / N\
Oen+rG 8 (®,T) S
\
(2,2)F (3%1.P)V -V (IFn. Py) F,APDFG -+ (X {Pa})FG
INTRO
SN —m—mm VRN
©n+veH — - —H,—G S O U {x;}m, T U {name; : H;},) +G S

x; and name; are fresh names not used anywhere

R
END args END args Proof
7 \\ /1IN (@) 6) ——= | L opmpletes
OnrG & -+ S, S - S,
ifn > 1 and G is provable by Sledgehammer™ with arguments args

R RULE r N R
/ \ ifris of foormH; — --- — H, — G ’ // \
©enrG 8 @©er)vrH -+ (OI+H, S
R R R
CHOOSE y SIMPLIFY args
S ON— /N /S N —/ \
O,T)F3Ix.G(x) S ©O,nNFrGy S OenrG S Oe,nrc S

G’ is the result of simplifying G with
Isabelle’s system simplifier.

The semantics of INDUCT and CASE_SPLIT are based on Isabelle’s induct and cases tactic.

R
R INDUCT args / CASE_SPLIT args /A
/ N\ y (OIS
OenrG S P N
(-’Zl:Hl) "Pl (-’ZnaHn) '_Pn

if Isabelle tactic induct args / cases args deduces goal G into n subgoals, where the i-th
subgoal incorporates local variables %;, hypotheses H;, and conclusion P;.

Fig. 5. The semantics of Minilang commands. Notation %/H denote a sequence of variables/hypothesis

, Vol. 1, No. 1, Article . Publication date: December 2018.

10 Qiyuan et al.

R CONSIDER P, | --- | P,,> R R CONSIDER Hx. P(x)> R
/N / N\ / N\ /N
©On+rG S (©6,T) S ©OnrG S er S
T N— N
(@, 2)rPivV---VP, (2,{PAHFG -+ (2,{P,}HF+GC (2,2)r3x. P(x) (%, {P(%)})FG
(a) One function: Case-analysis (b) The other function: Extential-Witness Extraction

Fig. 6. The semantics of CONSIDER combines two functions.

R
R ‘ R
\ . R (©1,1}) . |
Reduction 121/ Reduction
(0,) —— | I — (0, U0,,I1UL)
\ (0, U0, T;UL) FG (©2,13) / 1\
(02, 15) -G 2N T
T o T 1 n
Fig. 7. Minilang’s semantics additionally incorporates two automatic reduction rules. 77, - - - , 7, are schematic

variables denoting arbitrary subtrees.

every context would remain trivially empty. This is the motivation for the INTRO command. The
command rewrites the current goal by moving into the context all universally quantified variables
(% in Fig. 5) and all hypotheses ({H;}1<i<p in Fig. 5) occurring in the goal proposition, so that these
variables and hypotheses are in scope for subsequent lemmas.

While INTRO is admittedly technical, it is necessary for explicit context management. Minilang
offers an option to automatically invoke INTRO before HAVE and CONSIDER, allowing proofs
to more closely resemble informal mathematics at the cost of less fine-grained control. In our
experiments, we disable this option and require models to use INTRO explicitly.

END and NEXT are syntactic aliases of one another that are semantically equivalent. They
correspond to the common idiom in informal proofs — “the goal is easy to show” or “the goal
follows straightforwardly from the premises”. Operationally, these commands conclude the proof
of a subgoal by invoking Sledgehammer* to discharge its proof obligations. If Sledgehammer™ fails
to prove the goal or times out, the proof execution terminates with an error.

The motivation of introducing the NEXT alias is solely for readability: the word “next” naturally
reads as “finish this subgoal and move to its sibling”.

The first END rule in Fig. 5 removes the leftmost subgoal when it has siblings, but no rule
handles the case where it is an only child. This does not compromise completeness: two automatic
reduction rules (Fig. 7) maintain the invariant that every non-leaf node has at least two children.
These rules collapse any single-child node into its parent by merging their contexts and are applied
preemptively before all other rules.

The second END rule concludes the entire proof, transitioning to the terminal “proof complete”
state. The rule applies only when the proof state is a single-node tree.

The foregoing commands comprise all declarative structures in Minilang. We now present
commands that align with common proof operations in informal mathematics.

The RULE command corresponds to adopting a specific route of argument in an informal proof
(e.g., proof by contradiction). Such a route of argument is encoded as an inference rule of shape,

, Vol. 1, No. 1, Article . Publication date: December 2018.

A Minimalist Proof Language for Neural Theorem Proving over Isabelle/HOL 1

H; — .-+ — H,, — G, which indicates that the goal G can be reduced to the subgoals {H; }1<;i<p.
For example, the rule proof_by_contradiction in Fig. 3 has form, (P — False) — —P.

The command CHOOSE supplies a witness for an existential goal. When the goal is to prove
Jx. G(x), CHOOSE y provides a concrete term y and reduces the goal to proving G(y). The
command SIMPLIFY args corresponds to the simplification operation in informal proofs. It is
implemented by invoking Isabelle’s system simplifier on the proof goal, with argument args. The
command CASE_SPLIT and INDUCT perform structural case analysis and induction. They are
implemented by Isabelle’s cases and induct tactics.

3.4 Sledgehammer*: An Improved Sledgehammer

All proof obligations in Minilang are delegated to an improved Sledgehammer which we call
Sledgehammer*. The improvement (of Sledgehammer* itself and the way we incorporate it) includes
three aspects.

3.4.1 Premise selection aided by proof generation models. The END and NEXT commands incor-
porate a specific syntax to annotate the relevant lemmas that Sledgehammer* could consider using
as premises when carrying out the proof search, and the lemmas that should be avoided.

END /NEXT WITH relevant-lemmas WITHOUT avoided-lemmas

Our translation pipeline employs a specific pass (§4.2.4) to extract the relevant and avoided lemmas
from ATP proofs and annotate them in the training corpus. This allows proof generation models to
learn the relevant and avoided lemmas through the annotations in the corpus, as well as how these
lemmas relate to both the local proof step and the overall proof strategy. Consequently, the models
can generate relevant/avoided lemma annotations from a global proof strategy perspective.

On the implementation side, we reuse Sledgehammer’s existing interface for relevant/avoided
lemma hints. Sledgehammer’s original premise selection is based on heuristics [17] and classical
machine learning methods like k-NN [18]. We continue to use this premise selection mechanism in
addition to our explicit hints. We include a preprocessing pass that filters out undefined references
produced by language-model hallucinations. This prevents syntax errors and lets proofs proceed
even when some annotations are invalid.

3.4.2 Integration with simplification system. The next improvement of Sledgehammer*is its inte-
gration with Isabelle’s simplification system, a term rewriting engine enhanced with programmable
simplification procedures. This system is notably powerful because any decision problem in Is-
abelle/HOL can reduce to rewriting propositions to True, allowing arbitrary decision procedures to
be embedded as simplification procedures. These embedded procedures are often complementary to
SMT-based Sledgehammer, and can discharge many goals that Sledgehammer alone fails to prove.

Specifically, the improvement comprises two parts: First, tactic auto is applied before invoking
Sledgehammer. It rewrites the goal using the system simplifier and may split it into multiple, simpler
subgoals — cases where Sledgehammer often fails on the original goal but can succeed on the
decomposed subgoals one by one. However, auto can be time-consuming on complex goals, so we
impose a timeout and, if it expires, fall back to the safer tactic clarsimp. Second, Sledgehammer*
runs the simplification-based brute-force tactic fastforce in parallel with Sledgehammer as an
extra ATP backend.

Moreover, the relevant/avoided lemma hints are also used to augment the simplifiers invoked by
Sledgehammer™. A challenge is that these lemmas should not be fed naively as undifferentiated
inference rules, because the simplifiers distinguish rule roles (e.g., rewriting, splitting, and intro-
duction/elimination in tableaux-style reasoning). We develop a heuristic to guess the intended role
of a given rule and configure the simplifiers accordingly.

, Vol. 1, No. 1, Article . Publication date: December 2018.

12 Qiyuan et al.

This heuristic combines name-based and expression-based analysis. Rule names in Isabelle follow
certain naming conventions — for example, rewriting rules typically end in _simp, and splitting
rules typically end in .splits. If a rule’s name matches one of these conventions, the heuristic
classifies it accordingly. Second, many role-specific rules exhibit characteristic shapes; for example,
elimination rules always have the form (term; —?C) — --- — (term, —?C) —?C where
?C is a schematic variable. The heuristic pattern-matches such shapes in a rule’s statement to
determine its role. Finally, if none of these signals determines a role, the heuristic defaults to
classifying the rule as a rewriting rule, which is the most common case.

3.4.3 Caching proofs. Another minor improvement is that Sledgehammer* records all obtained
proofs in a persistent cache keyed by the goal’s expression. Because Sledgehammer is time-
consuming and somewhat nondeterministic, caching results substantially accelerates proof replay.

3.5 Soundness and Relative Completeness

THEOREM 1 (SOUNDNESS). If Isabelle’s simplifiers, tactic cases, tactic induct, and Sledgehammer”
are sound, then Minilang is sound: The execution of a proof script reaches the terminal “proof completes”
state only if the target proof goal is semantically valid.

The formalization of Minilang’s semantics is tied to Sledgehammer™. If we generalize the seman-
tics to be parametric in the choice of ATP (rather than fixed to Sledgehammer™), we can show that
there exists an ATP with respect to which Minilang is at least as proof-theoretically complete as a
Natural Deduction system.

THEOREM 2 (RELATIVE COMPLETENESS). Given a Natural Deduction system ND, there exists an
ATP such that any proposition provable by ND is provable by Minilang with respect to the ATP.

Proor. The idea is to use HAVE statements to replay the proof tree of this provable proposition.
Write all the formulas in the tree’s nodes into a sequence of HAVE statements, from the leaves
to the root, by a post-order traversal. Note that the proof for every statement requires only one
ND rule application. We show that an ATP exists to prove all the HAVE statements: Because the
number of ND rules and possible choices of their operands is finite, an ATP can enumerate all
possible applications to find the correct one. O

4 Translation from Isar to Minilang

Training NTP models requires substantial proof data, which does not exist for our newly designed
language. We address this through automated translation from Isar to Minilang, successfully
converting 85.28% of 340K existing Isar proofs obtained from Isabelle’s Archive of Formal Proofs
(AFP) [19] and Isabelle/HOL system library. This process of eliminating non-essential components
and concepts from Isar to ultimately obtain Minilang also reflects the differences between Minilang’s
minimalist design and Isar’s design.

4.1 Background

Isar is a powerful and intricate language. Its diverse syntax and rich features pose substantial
challenges for translating into Minilang.

4.1.1 Declarative Proof Structure. Isar provides a suite of declarative statements for various func-
tions, such as have for introducing subgoals, obtain for extracting witnesses from existential
statements, and assume for assumption management. All such statements must appear inside a
declarative proof block.

A declarative proof block begins with proof and ends with qed. When multiple goals are present,
command next can be inserted within a proof-qed block to close the current block and open a fresh

, Vol. 1, No. 1, Article . Publication date: December 2018.

A Minimalist Proof Language for Neural Theorem Proving over Isabelle/HOL 13

assume we face multiple proof goals Gy, - -+, Gy
proof (some tactic) proof (some tactic)
have some lemmaA by ... have A by ...
then show Gs by a tactic that may use A show G; using A by tactic
moreover with A have somelemmaB by ... have B using A by ...
finally show G; by a tactic that may use A, B, G3 show G; using Gs, B by tactic
next next
obtain x where x satisfies some condition C(x) obtain x where C(x)
hence G, and G4 by a tactic that may use C(x) show G, and G4 using C(x) by tactic
qed qed
Fig. 8. An example of complications in Isar’s proof Fig. 9. Normalization of the connectives in Fig. 8.

structure. hence = then show is an abbreviation.

one at the same level. However, a complication is that, next-separated blocks do not correspond
one-to-one, in sequence, to the proof goals. Instead, Isar uses statement show goal by tactic to
explicitly target a particular goal and discharge it with a tactic. Moreover, a block may contain
multiple show statements proving multiple goals in any order, and even a single show can target
several goals. Fig. 8 illustrates an example.

This intricate proof context in Isar complicates translation to Minilang, because in Minilang
proof blocks have a simple one-to-one, sequential correspondence with proof goals; the translation
must therefore normalize Isar proofs to Minilang’s block organization.

4.1.2 Connectives. Asillustrated in Fig. 8, Isar uses a variety of connectives such as then, moreover,
finally, and hence to chain proof steps within a proof block. Semantically, they pass previously
derived lemmas or conclusions as arguments to subsequent proof methods. Hence, all such connec-
tives can be uniformly expressed as using <lemmas> by <method>. For instance, Fig. 9 shows the
example from Fig. 8 rewritten in this normalized form.

4.1.3 Redundant Syntax. As mentioned in §2, Isar incorporates substantial syntactic redundancy
— numerous ways to perform the same logical operation. Concrete examples include that Isar
supports both forward, declarative proof construction (§4.1.1) and backward, tactic-based reasoning.
Although the proof-qed structure already supports opening proof contexts in the declarative
style, Isar supplies the subgoal command to provide essentially equivalent support in the tactic
style (Fig. 10). Moreover, even within the declarative style, Isar offers redundant mechanisms for
opening proof contexts. An instance is the block syntax (Fig. 11), whose effect is equivalent to a
standard proof—qed block. In §4.2.2, we devote significant effort to normalizing these variants.

4.2 The Translation Process

The translation process includes 26 passes (c.f. Appendix A), each of which represents one step
from an intermediate language to another closer to Minilang. These passes fall into four stages:

(1) Parsing the given Isar proof script into an Abstract Syntax Tree (AST).
(2) Elaborating Isar’s syntactic sugars & normalizing redundant proof idioms. This phase corre-
sponds to the first two translation strategies mentioned in §1 (page 2).
(3) Translating into Minilang (mapping the Isar AST into Minilang AST).
(4) Refinement: eliminating tactics successively with Sledgehammer™. This corresponds to the
last strategy in §1 (page 2).
We discuss each stage in the subsections that follow.

, Vol. 1, No. 1, Article . Publication date: December 2018.

14 Qiyuan et al.

current goal: H — G pro?f - { . have C if A for x
subgoal fix wvariables fix x roof -

premises name —> assume name: H assume A P

. . = have B; ... B,

for wvariables show G by tactics have B; ... B, show C by #

by tactics ged have C by u qed v
3
Fig. 10. Transforming subgoal into proof-qed. Fig. 11. Rewriting bracket block into proof-qed.

4.2.1 Parsing. Isar is implemented in Isabelle/ML, and so is our translator. This allows us to reuse
Isar’s parser to extract ASTs, ensuring correct handling of Isar’s various syntactic corner cases.
Concretely, we reuse Isar’s lexer in full and modify the final stage of the parser to emit our custom
AST. This custom AST comprises 42 node kinds, covering a broad range of Isar constructs.

4.2.2 Elaboration & Normalization. The stage (i) elaborates syntax sugars, making implicit infor-
mation explicit, and (ii) normalizes equivalent or near-equivalent ways of proof formalization into a
uniform representation. This reduces the AST from 42 node kinds to 15, simplifying the subsequent
translation to Minilang.

Many similar ways of proof formalization are not strictly equivalent: they coincide in most situa-
tions but diverge in certain corner cases, exhibiting subtle semantic differences. Our normalization
attempts to account for these cases, but cannot cover them exhaustively. Consequently, normaliza-
tion may change the semantics of a proof script. We therefore re-run Isabelle’s proof checker to
ensure that the modified proofs remain valid, and discard any that fail. This normalization step
contributes a major source of our translation failures.

Major steps in the elaboration & normalization process are presented as follows, starting with
localized transformations:

e Normalize all connectives into using with the lemmas’ explicit names. As mentioned in
§4.1.2, this is implemented by rewriting rules such as

have A ... then have B apply m = have A ... have B using A apply m
with A have B apply m = have B using this A apply m

e Assign anonymous lemmas with generated names. This prepares the next pass.

e Resolve pronouns this, that, prems, and assms. Depending on context, these pronouns refer
to the recent lemmas or assumptions. Our translator replays the Isar proof to obtain each
pronoun’s binding context, uses Isabelle/ML internals to resolve the reference, and replaces
it with the generated name from the previous pass, making all references explicit.

e Unfolding the macro variables ?thesis and ?case that refer to proof goals in local contexts.
We use the same approach as above, invoking Isabelle’s internal interfaces to resolve these
references and replace them with explicit terms.

e Isar allows lemmas to be referenced either by name or by their full expressions. This pass
replaces expression-based references with name-based ones.

e Add type annotations to variables and numbers. Although Isabelle’s type inference works
well in most cases, it sometimes fails to infer types for certain variables or numbers, causing
proofs to fail. In this pass, the translator explicitly annotates all variables and numerals with
their types and retains these annotations in the final training corpus, so the model learns to
emit the same type markings at generation time and thus avoids such failures.

Next are transformations on proof structure:

, Vol. 1, No. 1, Article . Publication date: December 2018.

A Minimalist Proof Language for Neural Theorem Proving over Isabelle/HOL 15

proof proof proof
proof have A; ... A, have A; ... A, have A; ... A,
have A; ... A, show Gj show G3 by tacs/Gs show G; by taca/Gy
show G3 and G, by taca/Gs next next
by taca show G; have A; ... A, show G, by tacp
next by taca/G; show G; by taca/G; next
show G, by tacp next next have A; ... A,
ged show G, by tacp show G, by tacp show Gs by taca/Gs

ged ged ged

split multi-goal show duplicate blocks reordering
containing multiple show

Fig. 12. Restructuring Isar’s proof-qed blocks to align with Minilang’s one-block-per-subgoal organization.
Notation t/G; denotes the tactic t’s segment for goal G;

e Reorganize Isar’s proof-qed structure to align with Minilang’s one-block-per-subgoal or-

ganization. This reorganization process is illustrated in Fig. 12. As noted in §4.1.1, a single
Isar proof-qed block may contain several next-delimited sub-blocks; each sub-block may
include multiple show statements; and each show may address multiple goals. To reorganize
this nested structure, the translator first splits each multi-goal show into single-goal show
statements. The split also applies to the statement’s associated tactic sequence: our translator
tracks the effect of each tactic application to determine which goal it addresses, and duplicates
any tactic that affects multiple goals. Next, any proof block that contains multiple show
statements is duplicated (as illustrated in Fig. 12) so that each resulting block contains exactly
one show. In addition, a dependency analysis is performed to remove unused lemmas from
the duplicated blocks. Finally, the blocks are reordered to follow the sequence of the proof
goals.

Normalize each subgoal statement into proof-qed block using the transformation in Fig. 10.
Rewrite each bracket structure into a proof-qed block (Fig. 11).

Normalize tactic goal_cases into the standard proof - case - qed structure.

In Isar, variable declarations by fix and assumption declarations by assume may appear
anywhere within a proof-qed block, interleaved with other proof operations. This pass
normalizes that freedom by moving all such declarations to the beginning of their con-
taining block. Additionally, not all variables and assumptions in Isar are declared explicitly
via fix /assume; some are introduced implicitly within show statements. This pass lifts
such implicit introductions to explicit declarations at the block header. Consequently, each
proof-qed block is normalized into a form amenable to direct translation to Minilang’s
INTRO command, via the mapping in Fig. 13 as discussed later in §4.2.3.

Finally, we consider elaboration and normalization of tactic sequences:

Tactic application in Isar may appear in different syntax (proof, ged, apply, and by). This
pass rewrites these occurrences so that every tactic application is expressed uniformly as
apply, allowing subsequent passes to consider apply only. This rewrite is implemented by
rules like, proof (tactic) = apply (tactic) proof — , and by (tactic) = apply (tactic) done.

Isar tactics can be combined by combinators (, +? | [n]). This step eliminates combinators
and normalizes composite tactics into sequences of atomic tactics. This is implemented by

, Vol. 1, No. 1, Article . Publication date: December 2018.

16 Qiyuan et al.

roof -
fix wvars P X X
sesume assms INTRO operations, [[operations, |
. R . next NEXT
operations 2 | [operations] .
sho I tacti o .
W goa [tactic sequence]] ext NEXT
tactic sequence . .
operations,, [[operations,]
[apply (tactic)] £ APPLY (tactic) [done] £ END ged
[have propositions]] £ HAVE propositions [consider cases]] £ CONSIDER cases

[obtain vars where conditions]] £ CONSIDER Fvars. conditions
[ForGoals(seq,, seq,, - - - , seq,)]| = [[seq,]| NEXT [seq,]] NEXT - - - NEXT [seq,]

Fig. 13. Selected translation rules from Isar to Minilang. [-] : Isar — Minilang is the translation mapping.

tracing the execution of composite tactics and expanding each composite into the exact
sequence of atomic invocations that actually run.

Isar tactics may operate on multiple goals (e.g., auto affects all open goals). By contrast,
Minilang requires operations for different proof goals to be delimited by NEXT; a single
operation is disallowed to range over multiple goals. As a result, the translation must identify,
for each goal, the sequence of tactics that act on it. This is implemented by tracing every tactic
invocation and recording its target goals; if an invocation spans several goals, we duplicate it
once per goal and confine each copy to that goal.

The resulting per-goal sequences are represented as an AST node ForGoals(seq,, - - - , seq,,),
where each seg; can only be a sequence of apply and/or ForGoals. This ForGoals AST node
is subsequently translated into Minilang’s NEXT in §4.2.3 by the rule in Fig. 13.

4.2.3 Translating into Minilang. By this stage, most redundant Isar constructs have been eliminated,
and the proof scripts have been normalized. From their normalized forms, a small set of mapping
rules suffices to translate the scripts into Minilang. A subset of these rules is shown in Fig. 13.

Note that tactic applications have not yet been eliminated at this stage. To express them in
Minilang, we extend Minilang with an APPLY command to denote a tactic application. Its semantics
is defined as follows, which mirrors Isar’s apply but acts only on the first subgoal.

R
R . / N\ ‘ ‘ . ,
VRN APPLY tactic ©r) S if applying tactic to Gy yields
_—)
©.I)FGy S P RN subgoals G Gn
, 0
(2,2)FrG1 -+ (2,0)F Gy

Additionally, to translate as much Isar as possible into Minilang, we extend Minilang with two
auxiliary commands: one configures Isabelle’s attribute system (e.g., to register local simplification
rules), and the other activates Isabelle’s bundle and module mechanisms. These commands account
for ~1.01% of the translated code, and we defer their details to our supplementary materials.

4.24 Refinement. Tactic applications still remain after the translation step in 4.2.3. Since Minilang
follows a purely declarative paradigm (§2) that discourages the use of tactics, the final stage of the
translation process aims to replace these remaining tactics with Sledgehammer* wherever possible.

, Vol. 1, No. 1, Article . Publication date: December 2018.

A Minimalist Proof Language for Neural Theorem Proving over Isabelle/HOL 17

By this stage, Minilang scripts express all tactic applications as sequences of APPLY commands
that terminate with END or NEXT. Attempting to eliminate these tactics, we repeatedly apply the
following substitutions, which progressively absorbs each APPLY command immediately preceding
an END or NEXT into that terminal statement.

APPLY tactic END WITH w WITHOUT wo + END WITH w lem* WITHOUT wo lem™
APPLY tactic NEXT w WITHOUT wo — NEXT WITH w lem* WITHOUT wo lem~
if, Sledgehammer™ can still prove the goal after removing the tactic

Recall from §3.4 that a key innovation of this work is that we extract both relevant lemmas and
lemmas to avoid as annotations into the training corpus, enabling proof generation models to learn
how to suggest these hints to assist Sledgehammer™’s premise selection. In the substitution rule
above, lem* and lem™ represent respectively the relevant and avoided lemmas extracted from the
arguments of tactic. An example is auto add: lem* del: lem™. These lemmas are merged into
the WITH and WITHOUT clauses as hints, where w and wo represent the lemma hints already
present before the substitution.

The extraction of the lem* and lem™ is performed by a heuristic we developed. It recognizes the
argument syntax of 44 common Isabelle tactics to identify relevant/avoided lemmas, and defaults
to treating all lemma arguments as relevant for unrecognized tactics.

The substitutions continue until either no APPLY remains or further substitution would cause
END or NEXT to fail to prove the goal using the Sledgehammer®. In the latter case, we are forced to
retain the remaining APPLY commands in the training corpus, which represents a compromise to
the purely declarative ideal advocated in §3. Fortunately, with the aid of relevant lemma annotations,
>95% of tactics are successfully eliminated, leaving APPLY commands accounting for only 6.7% of
all translated Minilang commands.

As an exception, when tactics correspond to common proof operations that Minilang directly
supports, the tactics are substituted into the corresponding commands instead of END or NEXT,

APPLY (auto args) — SIMPLIFY args APPLY (simp args) — SIMPLIFY args
APPLY (cases args) — CASE_SPLIT args APPLY (induct args) = INDUCT args

5 Evaluation

The translation method in §4 provides a way to construct Minilang corpora for training language

models. This allows us to evaluate Minilang’s effectiveness for NTP through fine-tuning LLMs.

In this section, we conduct an ablation study by fine-tuning 2 pretrained LLMs under 3 ATP

configurations (Sledgehammer®, original Sledgehammer, and no ATP) for both Minilang and Isar,

yielding 12 models in total to compare their pass rates on the same benchmark (PISA [20]).
Based on the evaluation results, we answer the following research questions:

RQ 1: Can we effectively improve declarative NTP by redesigning the underlying proof language?
RQ 2: Is improvement confined to syntax error reduction, or are reasoning errors also reduced?
RQ 3: For a redesigned proof language, how can we obtain effective training corpora for it?

In what follows, §5.1 analyzes the translation results and the corpus features; §5.2 details the
ablation study design and fine-tuning configurations; §5.3 analyzes the experiment results.

5.1 Analysis of the Translation Results

As discussed in Section 4.2.2, Isar’s language features encompass numerous corner cases that our
translator cannot exhaustively cover. Additionally, Isar is extensible, and many works in AFP define
custom commands that fall outside our translator’s scope. These factors limit our translation success

, Vol. 1, No. 1, Article . Publication date: December 2018.

18
100%
<L 20.0%
75%- \\\ 10.0%
~)
50% 1 Dhygg e 30%
Success (linear) = - 2.0%
25%4 === Isar (log) \‘~.._~~ ’ .
Minilang (log) Til0%

0.5%
1 23 45 6 7 8 9 1011 12 13 15 goals

Fig. 15. Translation success rate (solid line) and distri-
butions of Isar (dashed) and Minilang proofs (dotted)
over the number of subgoal declarations.

Qiyuan et al.

100%

30.0%

80% 1 10.0%

600 4
% Success (linear) | 3.0%
Tactic red. (linear)

Distribution (log)

40% 1
1.0%
20% 1
0.3%

10 15 20 30 commands

Fig. 16. Translation success rate (solid line), the ratio
of tactic counts after/before translation (dashed line),
and the distribution of Isar proofs (blue shadow) over

the number of Isar commands.

rate to ~85.28%. Nevertheless, the resulting 290K proofs are still a substantial corpus sufficient for

supervised fine-tuning.

To examine the quality of the translation, we
analyze the occurrence frequency of every com-
mand in the translation result. The result is
shown in Fig. 14, where END and NEXT are the
most frequent commands. This is because (1) ev-
ery goal and subgoal must be closed by END or
NEXT, and (2) 42.65% of Isar proofs can be proven
directly by Sledgehammer* with a single END
statement, requiring no other proof steps.

Subgoal declarations (HAVE and CONSIDER)

NEXT 19.0% \ HAVE 17.7%

\

Others 3,67) — CONSIDER 2.1%
€rs 5.0%

CASES. 2.1% ——

RULE 4.6% —

INDUCT 2.2% —
APPLY 6.7%

INTRO 2.4% — ~———END 39.6%

Fig. 14. Distribution of Minilang commands in the

. .) translation result.
constitute the next largest portion, confirming

their central role in declarative proofs. To evalu-

ate how well our translation preserves declarative structures, we first examine the distribution of
subgoal declaration counts before and after the translation. Specifically, Isar’s count is measured
by the number of have, hence, consider, and obtain commands; Minilang’s is by HAVE and
CONSIDER. As shown by the dashed line (original Isar) and dotted line (translated MiniLang) in
Figure 15, the distributions remain nearly identical, indicating that the declarative structures are
largely well preserved.

Using the number of subgoal declarations as a proxy for proof complexity, we further assess how
the translation success rate varies with this complexity. The result is illustrated by the solid line in
Fig. 15. For short-to-moderate declarative proofs (< 5 subgoals), the success rate exceeds 70%. As
the number of subgoal declarations increases, the success rate declines gradually; however, even
for complex proofs with 15 subgoals — which account for less than 1% of all declarative proofs —
the success rate remains above 50%. This demonstrates that our translator is reasonably successful
in preserving declarative proof structures, given the syntactic complexity of Isar.

As a complementary measure, we assess the translation success using the number of Isar com-
mands as an alternative complexity metric. As illustrated in Fig. 16, for moderate-sized Isar proofs
(up to 15 commands), the success rate remains above 78%. Even for longer proofs with 30 com-
mands, the success rate maintains 66%. These results further confirm that our translator is capable
of handling proofs of substantial length.

, Vol. 1, No. 1, Article . Publication date: December 2018.

A Minimalist Proof Language for Neural Theorem Proving over Isabelle/HOL 19

At last, we evaluate the effectiveness of the refinement process (§4.2.4) in eliminating tactics.
The dashed line in Figure 16 plots the ratio of atomic tactics in the translated corpus to those in the
original Isar. As it reveals, the refinement process reduces tactics by more than 80% across proofs
of all sizes. This confirms the efficacy of our refinement strategy for tactic elimination.

5.2 Model Training and Evaluation Setup

To minimize confounding factors in this evaluation, we carefully set up our experiments: (1) we
use Supervised Fine-Tuning (SFT) — a standard and basic training approach — to train NTP models
on both Isar and MiniLang; (2) we adopt whole-proof generation, where language models directly
produce complete proofs without additional search frameworks or inference-time scaffolding
beyond temperature sampling; (3) we follow the prompt setup from Baldur, a prior NTP work on
Isabelle to eliminate variations from prompt design. The concrete setup is detailed as follows.

5.2.1 Base Models. To assess Minilang across multiple models, we fine-tune two 7B base models:
Llemma [9] and DeepSeek-Prover-Base v1.5 (DPSK-PB) [10]. Both models have been pre-trained
on datasets from major proof assistants including Coq, Lean, and Isabelle.

5.2.2 Data Source. Our fine-tuning datasets are sourced from Isabelle AFP version 2025-02-12 [19]
and Isabelle 2024 HOL libraries [21]. We apply several preprocessing steps to these sources: we
remove unreachable code, exclude proofs of benchmark targets (such as those in PISA [20]), and
filter out proofs that exceed the context window limits of our base LLMs. After preprocessing, these
sources yield a total of ~332K proofs.

These preprocessed datasets are then converted into six versions, one corresponding to each
experimental condition in our ablation study, as detailed in the following subsection.

5.2.3 Abolation Setup & Dataset Construction. Our work introduces two primary improvements:
the redesign of the proof language and the enhancement of Sledgehammer. To comprehensively
evaluate their respective impacts on NTP performance, we design an ablation study covering all
combinations of two language choices (Isar vs. Minilang) and three ATP configurations, Sledgeham-
mer” (SH*), Sledgehammer (SH), and no ATP. This constitutes 2 X 3 = 6 conditions, necessitating
six versions of the training corpus. These conditions and their corpus are detailed as follows:

e Isar + no ATP: This evaluates the original Isar, using the corpus obtained in §5.2.2.

e Isar + SH: This evaluates Thor-style Isar language [11], which represents the best-known
language for declarative NTP on Isabelle. Thor-style Isar minimizes tactic usage by delegating
proof obligations to Sledgehammer. The corpus is constructed by exhaustively replacing
tactics with Sledgehammer whenever Sledgehammer can discharge the proof obligations
addressed by the original tactics.

e Isar + SH”: Same as Isar + SH, but use Sledgehammer™ instead. The corpus contains the
relevant lemma hints extracted using the same heuristic described in §4.2.4.

e Minilang + no ATP: The intermediate Minilang code obtained directly from the translation
step (§4.2.3) without applying the refinement step (§4.2.4). This intermediate representation
preserves all tactics as APPLY commands and deviates from Minilang’s design principle of
purely declarative theorem proving.

e Minilang + SH: This evaluates a weakened version of Minilang where the ATP backend is
downgraded from Sledgehammer™ to the original Sledgehammer. Its corpus is constructed by
removing the lemma hints from the Minilang + SH* corpus.

e Minilang + SH*: This evaluates the full-featured MiniLang. Its corpus is constructed by
translating the Isar + no ATP corpus using the pipeline established in §4.

, Vol. 1, No. 1, Article . Publication date: December 2018.

20 Qiyuan et al.

Table 2. PISA evaluation of models over MiniLang and Isar. SH = Sledgehammer, SH* = Sledgehammer™.

Base Model Language ATP pass@1 pass@4 pass@8

DPSK-PB Minilang SH* 69.1% 76.0% 79.2%
DPSK-PB Minilang SH 59.9% 68.1% 72.4%
DPSK-PB Thor-style Isar SH* 63.9% 69.6% 74.3%
DPSK-PB Thor-style Isar SH 45.7% 54.9% 59.7%

DPSK-PB Minilang none 35.5% 40.6% 44.9%
DPSK-PB Isar none 40.2% 45.8% 50.5%
Llemma Minilang SH* 68.0% 74.9% 78.9%
Llemma Minilang SH 58.7% 67.9% 72.2%
Llemma Thor-style Isar SH* 63.3% 66.9% 72.1%
Llemma Thor-style Isar SH 46.1% 51.9% 57.5%
Llemma Minilang none 35.2% 39.8% 44.6%
Llemma Isar none 38.6% 43.9% 48.6%

These ablation conditions differ only in their training corpus, proof language, and ATP backend;
all other experimental settings remain identical across the conditions.

5.24 Benchmark. We use PISA [20] as our evaluation benchmark. It originally comprises 3K goals
randomly sampled from Isabelle AFP version 2022-12-06. Due to the ongoing development of
Isabelle and AFP, some goals have been moved or removed from the newer versions. We manually
updated the dataset to AFP version 2025-02-12, removing unavailable goals, resulting in 2,962 goals.

5.2.5 Data Contamination. As PISA is sampled from the open-access AFP, it faces the same data
contamination risks inherent to all benchmarks derived from public datasets. Llemma explicitly
reports that they removed any proofs whose names appear in PISA from their pretraining data [9].
However, DPSK-PB makes no such claim in their paper [10]; we cannot rule out the possibility of
data leakage between PISA and DPSK-PB’s pretraining corpus.

Nevertheless, any such contamination would more likely inflate Isar’s performance relative to
Minilang, since Minilang proofs do not appear in either base model’s pretraining data. Thus, if
Minilang still demonstrates superior performance, data contamination concerns would minimally
undermine the conclusion of the paper.

5.2.6 Prompt Setup. Following Baldur’s approach, we use a simple prompt setup with two parts:
context and goal. Context includes declarations, lemmas, and proofs immediately preceding the goal
in the same file. The goal contains the name and statement. Given the 4K token context window for
both Llemma and DPSK-PB, we reserve 2K tokens each for prompt and models’ response, truncating
distant content when necessary.

5.2.7 Supervised Fine-Tuning (SFT). We use LLaMA-Factory [22], a widely used LLM training
framework to train Llemma and DPSK-PB with supervised fine-tuning. Both models are fine-tuned
for 2 epochs with a batch size of 256. The learning rate is set to 2 X 107>, and linearly scaled to 0
during training. The training is run on 8 Nvidia H200 GPUs, and each takes ~12 hours to finish.

5.2.8 Proof Check. We evaluate model performance using the standard pass@k metric. For each
benchmark entry, we sample k proof attempts from the model and verify each sample using

, Vol. 1, No. 1, Article . Publication date: December 2018.

A Minimalist Proof Language for Neural Theorem Proving over Isabelle/HOL 21

Isabelle’s proof checker. An entry is considered proved if at least one of the k samples passes
verification. The pass@k is then computed as the proportion of proved entries in the test set.

The evaluation is conducted on a 3-node cluster with 36 Intel i7 CPU cores, taking ~20 hours per
language for pass@8. Sledgehammer and Sledgehammer™* are configured with a 30-second timeout
per invocation.

Sledgehammer and Sledgehammer™ include a self-learning system that maintains local databases
of premise-goal connections. Performance on a goal improves when the hammers have previously
encountered similar problems. For fair comparison, we reset the local database before each model
evaluation. Nonetheless, this also means our results underestimate real-world performance, where
Sledgehammer™ would retain contextual knowledge and perform better.

5.2.9 Infrastructure. The proof check process is powered by a socket-based parallel Read-Eval-
Print-Loop infrastructure that we developed. It is implemented in the Isabelle/ML language [23] by
interfacing with Isabelle’s internals.

5.3 Results

Table 2 presents the evaluation results on PISA. Based on these results, we answer the three research
questions posed at the beginning.

5.3.1 RQ 1. Effectiveness of Redesigning Proof Language. To answer RQ 1, we compare our re-
designed language, Minilang + SH*, against Thor-style Isar + SH, the best-known language for
declarative NTP on Isabelle [11]. The results demonstrate substantial improvements of ~20 per-
centage points across both base models and evaluation metrics.

Our ablation study further reveals the sources of this improvement. When Minilang and Isar
use the same ATP backend (either SH or SH*), Minilang consistently outperforms Isar by at least 5
percentage points across both base models and all evaluation metrics. This advantage grows to
over 12 percentage points under SH. Conversely, holding the language fixed and upgrading from
SH to SH* yields at least 6 percentage points improvement across all models and metrics. These
results demonstrate that both Minilang’s language design and the ATP improvement contribute
significantly to NTP performance. These results directly answer RQ 1:

RA 1: Redesigning the proof language can effectively improve declarative NTP.

When SH and SH* are disabled, proofs rely completely on tactic applications, turning the scenario
into tactic-based theorem proving, as opposed to declarative proving. In this case, Minilang no
longer maintains its advantage and falls behind Isar by ~5 percentage points. This is reasonable
given that Minilang is specifically designed for declarative proofs.

In particular, Minilang restricts every tactic application to act only on the leading subgoal.
While this brings clearer proof structure and better alignment between tactics and subgoals, it also
prevents models from using terminating tactics (e.g., fastforce, auto) to conclude all subgoals at
once. Instead, models must precisely understand each tactic’s effect and track proof state changes —
a task that is prohibitively difficult without interactive feedback from the proof assistant, even for
human users. Indeed, 37.4% of proof failures result from premature termination: models incorrectly
assume all subgoals are resolved when unproven subgoals remain. Thus, we attribute Minilang’s
performance degradation to its explicit exposure of the inherent difficulties of tactic-based proving
for language models.

5.3.2 RQ2. Sources of Performance Improvement. Holding the ATP fixed at SH*, Figure 17 compares
the failure causes between Minilang and Isar across both base models in the pass@1 evaluation.

, Vol. 1, No. 1, Article . Publication date: December 2018.

22 Qiyuan et al.

Hammer Fails (M=16.0%, 1=20.5%) 4 @ O
Operation Fails (M=3.4%, 1=6.4%) @ ———O
Term Lang (M=5.3%, 1=4.2%) o—e
Undefined Lemma (M=3.5%, 1=2.6%) o—e
Proof Lang (M=1.2%, 1=1.6%) [@)
Window Overflow (M=1.2%, 1=0.7%)4{ O-@
Unknown (M=0.3%, 1=0.4%) {1 QO
0% 1% 2% 3% 4% 5% 6% 16% 17% 18% 20% PISA cases

@® Minilang
O Thor-style Isar + SH*

Fig. 17. Comparison of failure causes between fine-tuned models over Minilang (M) and Isar+SH* (1).

Failures are categorized as follows: (1) Hammer Fails indicates that SH* failed to discharge a proof
obligation; (2) Operation Fails represents failures in executing proof operations, such as tactics and
other specific mechanisms like calculational reasoning; (3) Term Lang denotes syntax errors in
term expressions; (4) Proof Lang captures ill-formed proof scripts; (5) Window Overflow arises when
the allocated 2K context window is insufficient for the model to complete the proof; (6) Unknown
occurs when the evaluation infrastructure fails to capture specific error information.

The Proof Lang category shows that Minilang does help models generate syntactically correct
proofs, but this improvement accounts for no more than 10% of the total performance gain.

The primary improvements come from the reduced failures in proof operations and the increased
hammer success rate. These gains cannot be attributed to the ATP enhancement, because both
Minilang and Isar use the same SH* backend in this comparison. Since our controlled comparison
isolates language choice as the only variable, we believe these gains stem from Minilang’s design
helping models generate more logically valid proof steps (reducing operation failures) whose
resulting proof obligations are more tractable for SH* (increasing its success rate).

RA 2: The improvement brought by redesigning the proof language can extend beyond syntax
errors to enhance models’ capability of generating logically correct proofs

We also observe an increase in term language errors for Minilang, despite no modifications to this
aspect of the language. This likely reflects the sequential nature of our error analysis, which reports
only the first error encountered — as Minilang resolves certain types of errors, other unrelated
issues may become more visible in the error categorization.

5.3.3 RQ 3: Training Corpora for a New Proof Language. The Minilang training corpus is obtained
by translating Isabelle’s existing proofs. The translation process is incomplete, losing ~15% of
proofs, with higher loss rates observed for longer declarative proofs (Fig. 14). Despite this data
reduction, Minilang’s experimental results still demonstrate clear advantages due to language
improvements. This validates the effectiveness of our translation-based approach.

RA 3: Rule-based translation is an effective approach to obtain training corpora for a redesigned
proof language.

6 Related Works

To the best of our knowledge, this work represents the first attempt to improve NTP through
comprehensive proof language redesign. We discuss related work across several areas.

, Vol. 1, No. 1, Article . Publication date: December 2018.

A Minimalist Proof Language for Neural Theorem Proving over Isabelle/HOL 23

6.1 Analysis of LLMs’ challenges in learning proof languages

PALM [6] conducts a formative study analyzing the direct causes of failures in a GPT-based NTP
system for Coq’s proof language Gallina. One of their key findings is that LLMs often produce
proofs with correct high-level structure but struggle with low-level details, justifying the declarative
NTP paradigm underlying our work. Additionally, they demonstrate that proof language features
— such as explicit structuring mechanisms like bullets — significantly impact LLM performance,
supporting our approach of improving NTP through language redesign.

6.2 Proof Representations for Neural Theorem Proving

Many works [4, 24-27] design specialized proof representations for training language models on
theorem-proving tasks.

One line of work uses representations that combine multiple types of information while retaining
the original proof language syntax. For instance, Kimina [4] integrates informal proofs with formal
proof sketches; TacticToe [25] combines proof states with tactic application histories; HOLStep [24]
and IsarStep [27] provide datasets and benchmarks where models work with proof states alongside
proof step sequences. LLMSTEP [26] uses representations combining proof states and file context.

Another line of work transforms proof texts into alternative data structures. Passport [28]
represents Coq proofs as trees to capture their hierarchical structure; Paliwal et al.[29] use graph
representations to model dependencies between proof steps; CoqGym[30], MLFMF [31], and
HOList [32] adopt S-expression formats.

Finally, Thor [11] pioneered the use of Sledgehammer to simplify proof languages for declarative
NTP. It exhaustively replaces tactics with Sledgehammer to obtain proofs closer to declarative
outlines, thereby shifting the burden of tactic reasoning from language models to automated
theorem provers. However, this elimination is incomplete in several aspects. First, Thor does
not normalize Isar’s redundant proof idioms and retains Isar’s reasoning mechanisms that are
unnecessary for declarative NTP — such as connectives, generic elimination, and calculational
reasoning. Second, it does not leverage relevant lemma hints to improve Sledgehammer’s premise
selection, limiting the effectiveness of proof automation. Third, Thor does not properly handle
cases where a single tactic addresses multiple subgoals. Our work extends Thor’s vision of a purely
declarative language for NTP by addressing these limitations through comprehensive language
redesign and enhanced Sledgehammer™.

6.3 Prior Neural Theorem Provers on Isabelle

Leading NTP works on Isabelle and PISA include Thor [11], Baldur [7], and Magnushammer [33].
Thor has been discussed in §6.2. It employs Google’s proprietary models and devices, achieving a
success rate of 57.0% on PISA under a computational budget of at most 300 model queries. Baldur
fine-tunes the LLM Minerva [7] to generate whole Isabelle/HOL proofs. It also incorporates a repair
model that leverages Isabelle’s error messages to fix broken proofs. Baldur reaches 65.7% with
pass@64 on PISA. Magnushammer [33] adopts contrastive learning to target premise selection, the
same task as Sledgehammer. Though this approach does not involve proof generation by LLMs, its
combination with Thor reaches the previous state-of-the-art, a success rate of 71% on PISA.

All aforementioned works use closed-source models, preventing direct performance comparisons
under identical configurations. Nonetheless, our ablation study replicates Thor’s approach within
our experimental framework. Under identical experimental conditions, Minilang achieves ~20
percentage points improvement over Thor-style Isar (Table 2). Furthermore, under a smaller
computational budget than Magnushammer (500s timeout, 16 CPU cores, and up to 8 proof attempts

, Vol. 1, No. 1, Article . Publication date: December 2018.

24 Qiyuan et al.

per goal), we achieve a pass@8 success rate of 79.2% on PISA. Our end-to-end results represent
new state-of-the-art performance on the PISA benchmark.

7 Limitations and Future Work

The main trade-off due to Minilang’s restriction on language elements is that some goals may require
more proof steps, although they are still provable because Minilang is no less proof-theoretically
complete than Natural Deduction (Theorem 2). Though this trade-off might be unacceptable to
human users who prefer efficiency, it aligns well with LLMs’ computational strengths: generating
lengthy proofs by repeatedly applying learned operations.

While this work implements Minilang in Isabelle/HOL, it is possible to port at least the core
of Minilang to other proof assistants like Lean. This portability stems from Minilang’s focus on
declarative proof structures, where the notions are general across specific logics and software
systems. As an instance, all Minilang commands in Table 1 have correspondences in Lean. Relying on
powerful ATPs, we believe most disparities between proof assistants can be harmonized. Hopefully,
Minilang can serve as a bridge, preventing the long-standing fragmentation in the field of proof
assistants from spreading into the field of NTP.

8 Data Availability Statement

All our infrastructures and data are open sourced.

Isabelle REPL infrastructure https://github.com/xqyww123/Isa-REPL

Minilang interpreter https://github.com/xqyww123/Isa-Mini

Minilang translator https://github.com/xqyww123/Isa-Mini-Translator
Sledgehammer* https://github.com/xqyww123/auto_sledgehammer

Machine Learning Framework https://github.com/xqyww123/MLML

Translated Minilang Corpus https://huggingface.co/datasets/ ANTPG/Minilang- AFP-v1

Language Models https://huggingface.co/collections/ ANTPG/minilang-
oopsla26-models

References

[1] Z.Li, J. Sun, L. Murphy, Q. Su, Z. Li, X. Zhang, K. Yang, and X. Si, “A survey on deep learning for theorem proving,” in
The 1st Conference on Language Modeling, 2024. [Online]. Available: https://openreview.net/forum?id=zlw6 AHwukB

[2] Google DeepMind, “Al achieves silver-medal standard solving International Mathematical Olympiad problems,”
https://deepmind.google/discover/blog/ai- solves-imo-problems-at-silver-medal-level/, 2024.

[3] L. Chen, J. Gu, L. Huang, W. Huang, Z. Jiang, A. Jie, X. Jin, X. Jin, C. Li, K. Ma, C. Ren, J. Shen, W. Shi, T. Sun, H. Sun,
J. Wang, S. Wang, Z. Wang, C. Wei, S. Wei, Y. Wu, Y. Wu, Y. Xia, H. Xin, F. Yang, H. Ying, H. Yuan, Z. Yuan, T. Zhan,
C. Zhang, Y. Zhang, G. Zhang, T. Zhao, J. Zhao, Y. Zhou, and T. H. Zhu, “Seed-prover: Deep and broad reasoning for
automated theorem proving,” 2025. [Online]. Available: https://arxiv.org/abs/2507.23726

[4] H. Wang, M. Unsal, X. Lin, M. Baksys,]J. Liu, M. D. Santos, F. Sung, M. Vinyes, Z. Ying, Z. Zhu, J. Lu, H. de Saxcé,
B. Bailey, C. Song, C. Xiao, D. Zhang, E. Zhang, F. Pu, H. Zhu, J. Liu, J. Bayer, J. Michel, L. Yu, L. Dreyfus-Schmidt,
L. Tunstall, L. Pagani, M. Machado, P. Bourigault, R. Wang, S. Polu, T. Barroyer, W.-D. Li, Y. Niu, Y. Fleureau, Y. Hu,
Z.Yu, Z. Wang, Z. Yang, Z. Liu, and J. Li, “Kimina-prover preview: Towards large formal reasoning models with
reinforcement learning,” 2025. [Online]. Available: https://arxiv.org/abs/2504.11354

[5] T. Achim, A. Best, K. Der, M. Fédérico, S. Gukov, D. Halpern-Leister, K. Henningsgard, Y. Kudryashov, A. Meiburg,
M. Michelsen, R. Patterson, E. Rodriguez, L. Scharff, V. Shanker, V. Sicca, H. Sowrirajan, A. Swope, M. Tamas, V. Tenev,
J. Thomm, H. Williams, and L. Wu, “Aristotle: Imo-level automated theorem proving,” 2025. [Online]. Available:
https://arxiv.org/abs/2510.01346

[6] M.Lu, B. Delaware, and T. Zhang, “Proof automation with large language models,” in Proceedings of the 39th IEEE/ACM
International Conference on Automated Software Engineering, ser. ASE *24. New York, NY, USA: Association for
Computing Machinery, 2024, p. 1509-1520.

[7] E.First, M. N. Rabe, T. Ringer, and Y. Brun, “Baldur: Whole-proof generation and repair with large language models,”
in Proceedings of the 31st ACM Joint European Software Engineering Conference and Symposium on the Foundations

, Vol. 1, No. 1, Article . Publication date: December 2018.

https://github.com/xqyww123/Isa-REPL
https://github.com/xqyww123/Isa-Mini
https://github.com/xqyww123/Isa-Mini-Translator
https://github.com/xqyww123/auto_sledgehammer
https://github.com/xqyww123/MLML
https://huggingface.co/datasets/ANTPG/Minilang-AFP-v1
https://huggingface.co/collections/ANTPG/minilang-oopsla26-models
https://huggingface.co/collections/ANTPG/minilang-oopsla26-models
https://openreview.net/forum?id=zlw6AHwukB
https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/
https://arxiv.org/abs/2507.23726
https://arxiv.org/abs/2504.11354
https://arxiv.org/abs/2510.01346

A Minimalist Proof Language for Neural Theorem Proving over Isabelle/HOL 25

(10

[11

[12
[13
(14
[15

(16

[17
[18
[19
[20
[21

[22

[23
[24
[25
[26
[27
[28
[29
[30

[31

—

—

]

—

]

= O =

]

]

e s —

]

—

]

—

]

— I =

of Software Engineering, ser. ESEC/FSE 2023. New York, NY, USA: Association for Computing Machinery, 2023, p.
1229-1241.

Z.Z.Ren, Z. Shao, J. Song, H. Xin, H. Wang, W. Zhao, L. Zhang, Z. Fu, Q. Zhu, D. Yang, Z. F. Wu, Z. Gou, S. Ma,
H. Tang, Y. Liu, W. Gao, D. Guo, and C. Ruan, “DeepSeek-Prover-V2: Advancing Formal Mathematical Reasoning via
Reinforcement Learning for Subgoal Decomposition,” 2025. [Online]. Available: https://arxiv.org/abs/2504.21801

Z. Azerbayev, H. Schoelkopf, K. Paster, M. D. Santos, S. M. McAleer, A. Q. Jiang, J. Deng, S. Biderman, and S. Welleck,
“Llemma: An open language model for mathematics,” in 12th International Conference on Learning Representations
(ICLR), Vienna, Austria, May 2024.

H. Xin, Z. Z. Ren, J. Song, Z. Shao, W. Zhao, H. Wang, B. Liu, L. Zhang, X. Lu, Q. Du, W. Gao, H. Zhang, Q. Zhu, D. Yang,
Z.Gou, Z. F. Wu, F. Luo, and C. Ruan, “DeepSeek-Prover-V1.5: Harnessing Proof Assistant Feedback for Reinforcement
Learning and Monte-Carlo Tree Search,” in ICLR 2025, Singapore, April 24-28, 2025.

A. Q. Jiang, W. Li, S. Tworkowski, K. Czechowski, T. Odrzygézdz, P. Milos, Y. Wu, and M. Jamnik, “Thor: Wielding
Hammers to Integrate Language Models and Automated Theorem Provers,” in NeurIPS 2022, New Orleans, LA, USA,
November 28 - December 9, 2022, 2022.

K. Palmskog, “qarith-stern-brocot,” https://github.com/rocq-community/qarith-stern-brocot/blob/
9400dafdc7e35b53d23ab336e3a1b548c3b09133/theories/sqrt2.v, 2022, [Online; accessed 07-May-2025].

Lean community, “Logic and Proof,” https://leanprover-community.github.io/logic_and_proof/introduction.html, 2025,
[Online; accessed 07-May-2025].

Wikipedia, “Isabelle (proof assistant),” http://en.wikipedia.org/w/index.php?title=Isabelle%20(proof%20assistant), 2025,
[Online; accessed 07-May-2025].

R. Xin, C. Xi, J. Yang, F. Chen, H. Wu, X. Xiao, Y. Sun, S. Zheng, and K. Shen, “Bfs-prover: Scalable best-first tree search
for llm-based automatic theorem proving,” 2025. [Online]. Available: https://arxiv.org/abs/2502.03438

A. Q. Jiang, S. Welleck, J. P. Zhou, T. Lacroix, J. Liu, W. Li, M. Jamnik, G. Lample, and Y. Wu, “Draft, sketch, and
prove: Guiding formal theorem provers with informal proofs,” in The Eleventh International Conference on Learning
Representations, ICLR 2023, Kigali, Rwanda, 2023.

J. Meng and L. C. Paulson, “Translating higher-order clauses to first-order clauses,” Journal of Automated Reasoning,
vol. 40, no. 1, pp. 35-60, Jan 2008.

D. Kiihlwein, J. C. Blanchette, C. Kaliszyk, and J. Urban, “MaSh: Machine Learning for Sledgehammer,” in Interactive
Theorem Proving, S. Blazy, C. Paulin-Mohring, and D. Pichardie, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2013, pp. 35-50.

AFP contributors, “Archive of Formal Proofs,” https://www.isa-afp.org/, 2025.

A. Q. Jiang, W. Li, J. M. Han, and Y. Wu, “LISA: Language models of ISAbelle proofs,” in 6th Conference on Artificial
Intelligence and Theorem Proving (AITP), 2021.

Isabelle contributors, “Hol libraries,” the src/HOL folder in the redistribution pack of Isabelle 2024, https://isabelle.in.
tum.de/website-Isabelle2024, 2024, [Online; accessed 07-May-2025].

Y. Zheng, R. Zhang, J. Zhang, Y. Ye, and Z. Luo, “LlamaFactory: Unified efficient fine-tuning of 100+ language
models,” in Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 3: System
Demonstrations), Y. Cao, Y. Feng, and D. Xiong, Eds. Bangkok, Thailand: Association for Computational Linguistics,
Aug. 2024, pp. 400-410. [Online]. Available: https://aclanthology.org/2024.acl-demos.38/

M. Wenzel, The Isabelle/Isar Implementation, chapter 0 covers Isabelle/ML. With contributions by Stefan Berghofer,
Florian Haftmann, and Larry Paulson. [Online]. Available: https://isabelle.in.tum.de/doc/implementation.pdf

C. Kaliszyk, F. Chollet, and C. Szegedy, “HolStep: A Machine Learning Dataset for Higher-order Logic Theorem
Proving,” in ICLR 2017, Toulon, France, April 24-26, 2017, 2017.

T. Gauthier, C. Kaliszyk, J. Urban, R. Kumar, and M. Norrish, “Tactictoe: Learning to prove with tactics,” Journal of
Automated Reasoning, vol. 65, no. 2, pp. 257-286, Feb 2021.

S. Welleck and R. Saha, “Llmstep: Llm proofstep suggestions in lean,” 2023. [Online]. Available: https:
//arxiv.org/abs/2310.18457

W.Li, L. Yu, Y. Wu, and L. C. Paulson, “IsarStep: a Benchmark for High-level Mathematical Reasoning,” in ICLR 2021,
Virtual Event, Austria, May 3-7, 2021.

A. Sanchez-Stern, E. First, T. Zhou, Z. Kaufman, Y. Brun, and T. Ringer, “Passport: Improving Automated Formal
Verification Using Identifiers;” ACM Trans. Program. Lang. Syst., vol. 45, no. 2, Jun. 2023.

A. Paliwal, S. Loos, M. Rabe, K. Bansal, and C. Szegedy, “Graph Representations for Higher-Order Logic and Theorem
Proving,” Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 03, pp. 2967-2974, Apr. 2020.

K. Yang and J. Deng, “Learning to Prove Theorems via Interacting with Proof Assistants,” in Proceedings of the 36th
International Conference on Machine Learning, vol. 97. PMLR, 09-15 Jun 2019, pp. 6984-6994.

A. Bauer, M. Petkovic, and L. Todorovski, “MLFMF: Data Sets for Machine Learning for Mathematical Formalization,” in
Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023,

, Vol. 1, No. 1, Article . Publication date: December 2018.

https://arxiv.org/abs/2504.21801
https://github.com/rocq-community/qarith-stern-brocot/blob/9400dafdc7e35b53d23ab336e3a1b548c3b09133/theories/sqrt2.v
https://github.com/rocq-community/qarith-stern-brocot/blob/9400dafdc7e35b53d23ab336e3a1b548c3b09133/theories/sqrt2.v
https://leanprover-community.github.io/logic_and_proof/introduction.html
http://en.wikipedia.org/w/index.php?title=Isabelle%20(proof%20assistant)
https://arxiv.org/abs/2502.03438
https://www.isa-afp.org/
https://isabelle.in.tum.de/website-Isabelle2024
https://isabelle.in.tum.de/website-Isabelle2024
https://aclanthology.org/2024.acl-demos.38/
https://isabelle.in.tum.de/doc/implementation.pdf
https://arxiv.org/abs/2310.18457
https://arxiv.org/abs/2310.18457

26 Qiyuan et al.

NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023, A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt,
and S. Levine, Eds., 2023.

[32] K. Bansal, S. Loos, M. Rabe, C. Szegedy, and S. Wilcox, “HOList: An Environment for Machine Learning of
Higher Order Logic Theorem Proving,” in Proceedings of the 36th International Conference on Machine Learning, ser.
Proceedings of Machine Learning Research, K. Chaudhuri and R. Salakhutdinov, Eds., vol. 97. PMLR, 09-15 Jun 2019,
pp- 454-463. [Online]. Available: https://proceedings.mlr.press/v97/bansal19a.html

[33] M. Mikula, S. Tworkowski, S. Antoniak, B. Piotrowski, A. Q. Jiang, J. P. Zhou, C. Szegedy, L. Kucinski, P. Milos, and
Y. Wu, “Magnushammer: A Transformer-Based Approach to Premise Selection,” in The Twelfth International Conference
on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024.

A List of Translation Passes
See Table 3.

, Vol. 1, No. 1, Article . Publication date: December 2018.

https://proceedings.mlr.press/v97/bansal19a.html

A Minimalist Proof Language for Neural Theorem Proving over Isabelle/HOL 27

Table 3. Translation passes in our translator from Isar to Minilang, presented in their execution order. LoC =
the number of lines of Isabelle/ML code.

No. LoC Description
1. 83 Desugaring macro variables like ?thesis and ?case
2. 76 Assigning names to anonymous lemmas and intermediate statements.
3. 30 Converting the commands also, finally , moreover, and ultimately into using.
4. 42 A single statement declaration command in Isar can involve attribute modifiers
and let-binding declarations. This pass moves the attributes and let-bindings
embedded in each statement declaration into separate commands.
5. 64 Resolving pronouns (macro fact references) like this and that.
6. 39 Normalizing the commands with, from, hence, then, thus, and consecutive
multiple using into a single using command.
7. 280 Factreferences in Isar can be by name or by expression pattern. This pass resolves
all expression patterns and replaces them with the names of the referenced facts.
8. 44 Normalizing subgoal command into the standard proof-qed block.
9. 26 Checking if all consider is used exclusively for case splitting. If not, the transla-
tion is unsupported, and an error is raised.
10. 32 Tactics can appear in many Isar commands (e.g., by, apply_end, proof, apply).
This pass moves all the tactics to separate apply command.
11. 55 Removing place holder tactics (-).
12. 14 Normalizing all using facts commands into tactic “use facts in - - - 7. This pass
eliminates all using commands.
13. 238 Normalizing proof-qed blocks such that each block targets exactly one proof
goal in the order the goals appear.
14. 21 Moving assume and fix commands to the beginning of each proof-qed block.
15. 22 Normalizing tactics induct_tac and case_tac into induct and cases.
16. 55 Normalizing the tactic goal_cases into the standard proof (cases)-next-ged.
17. 30 Collecting information about the fixed hypotheses and variables from the assume
and fix commands within each proof-qed block.
18. 29 Normalizing the bracket syntax {...} into the standard proof-qed block.
19. 279 Eliminating tactic combinators and normalizing the tactic applications such that
each application affects the leading subgoal only.
20. 42 Flattening proof-qed blocks that contain exactly one nested proof-qed block.
21. 393 Translating the normalized Isar proof into Minilang proof.
22. 31 Normalizing APPLY (use facts in tactic) into APPLY (tactic) WITH facts; Nor-
malizing APPLY (insert facts) APPLY (tactic) into APPLY (tactic) WITH facts;
Handling other cases relating to insert.
23. 121 Normalizing tactics rule_tac, erule_tac, drule_tac, frule_tac, rule,drule,
frule, erule, intro, elim, dest, standard, unfold_locales into RULE.
24. 46 Normalizing RULE (exI), RULE (ex1I), RULE (bexI) into command CHOOSE.
25. 36 Applying SH* to eliminate tactics. (The code for SH* is not included.)
26. 25 Normalizing the remaining tactics simp, auto, simp_all, clarsimp into the
command SIMPLIFY.
Total 2153 The transformation from Isar AST to Minilang AST. The parser, printer, evaluator,

basic infrastructure, and other facilities are not included.

, Vol. 1, No. 1, Article . Publication date: December 2018.

	Abstract
	1 Introduction
	2 Motivation
	3 Minilang: A Minimalist Proof Language Mirroring Informal Proofs
	3.1 Syntax
	3.2 Proof Model: State Machine over Trees
	3.3 Semantics
	3.4 Sledgehammer*: An Improved Sledgehammer
	3.5 Soundness and Relative Completeness

	4 Translation from Isar to Minilang
	4.1 Background
	4.2 The Translation Process

	5 Evaluation
	5.1 Analysis of the Translation Results
	5.2 Model Training and Evaluation Setup
	5.3 Results

	6 Related Works
	6.1 Analysis of LLMs' challenges in learning proof languages
	6.2 Proof Representations for Neural Theorem Proving
	6.3 Prior Neural Theorem Provers on Isabelle

	7 Limitations and Future Work
	8 Data Availability Statement
	References
	A List of Translation Passes

